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Stellingen behorende bij het proefschrift
‘Artificial atoms and molecules’
T.H. Oosterkamp

1.

Het modelleren van een halfgeleider quantum dot is
eenvoudiger dan het meten eraan.

Gezien de sterke koppeling tussen kunstmatige atomen en
fononen in GaAs zijn deze in principe geschikt voor
cavity QAD (quantum acousto-dynamics) experimenten.

Een gedetailleerde interpretatie van Kondo data in
quantum dots wordt bemoeilijkt doordat het niet
verstoorde spectrum moeilijk afzonderlijk kan worden
gemeten; verticale en kleine dubbele quantum dots
kunnen hier mogelijk uitkomst bieden.

De mens is geen individu.

Iemand die zich onder leden van een corporale vereniging
begeeft, vergaat het als een kind in een ballenbad; als de
ballendichtheid (bij gelijkblijvend volume) een zekere
kritieke waarde overschrijdt, vindt er een faseovergang
plaats.

Het overgrote deel van de ongelijkheid tussen mannen en
vrouwen is terug te voeren op de grote moeite die het

baren van kinderen met zich mee brengt.
(Genesis 3:16)




7. Niet de mens is de kroon op Gods schepping, maar de
sabbat; zo is in het wetenschappelijk bedrijf naast de
transpiratic en de inspiratie een belangrijke rol voor de
expiratic weggelegd.

(proefschrift Jan J. Boersema, Thora en Stoa over mens en natuur,
Callenbach, Baarn 1997)

8. Zolang het Nederlands voetbalelftal iets ter
verontschuldiging weet aan te voeren na een verloren
wedstrijd, wordt het geen kampioen.

9. De fietsenstalling voor menig groot station vertoont
belangrijke overeenkomsten met de harde-schijfruimte op
€en computer.

10. Omwille van de symmetrie zou het overerven van de
achternaam van moeder op dochter en van vader op zoon
moeten geschieden.
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Preface

De meetsnoeren vielen mij in liefelijke dreven,
Jja, mign erfdeel bekoort mij. Psalm 16:6

This thesis describes a number of experiments on semiconductor quantum
dots performed from 1994 to 1998 in the Quantum Transport group of Prof. J.E.
Mooij at Delft University of Technology. Quantum dots are small conductive
regions in a semiconductor that contain a tunable number of electrons. They are
often referred to as ’artificial atoms’, because the electrons are confined to an
artificially made puddle, in much the same way as electrons are confined to the
region around the nucleus of an atom. And although the shape of the confinement
potential in artificial atoms is different from that of atoms they display much of
the same physics. One of the properties that the electrons in quantum dots share
with those in atoms is that they occupy discrete states. In other words, the
energy of an electron in an atom or in a quantum dot cannot just have any value,
the electron can only move in fixed orbitals. The yellow light coming from the
sodium lightbulbs along dutch highways is a consequence of this fact. Due to
the heat produced by the electricity in the light bulb, electrons are promoted
from orbitals with low energy to orbitals with higher energy. As the electrons
fall back again to an orbital with low energy, they emit light. The color of the
light produced is determined by the energy difference between these states, and
in sodium atoms the color of the emitted light turns out to be yellow.

Because we can vary the shape and the size of our quantum dots we can
study the properties and interactions between the electrons in greater detail than
is possible in atoms. A large part of this thesis discusses the discrete states (or
orbitals) in quantum dots and how they change with a magnetic field. Some of
our results can be understood with a model in which the interactions between
the electrons on the quantum dot are greatly simplified. We have been especially
interested in deviations from this simple model due to the interactions between
the electrons. Such many body effects teach us how the electrons really interact
and how this affects their energy levels.

If we can make an artificial atom, a natural question to ask is, whether it
is also possible to combine two artificial atoms to form an artificial molecule.
Technically it is not so difficult to fabricate two quantum dots very close together.
It was much more difficult to show that when an electron can hop back and forth
between two quantum dots, new molecular orbitals are formed. Whether this
happens depends on the coherence of the system. We have shown that there
are indeed molecular states that extend over both dots, by inducing transitions
between them with light of an energy that matched their energy difference.
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The research described in this thesis, is very much a group effort. It has been
stimulating to work in the large group of Prof. Mooij. The way his group is
organized provided a lot of colleagues to discuss with, an infrastructure that I
have seen nowhere else and many visitors from different parts of the world. It
has been very exciting and enjoyable to be part of the combined group effort
that resulted in the publication of 10 articles in Nature, Science or PRL within
one year. A lot of people have contributed to this thesis: people that fabricated
samples, visitors, undergraduate students and a lot of colleagues.

None of the devices that are described in this thesis were fabricated by my-
self. The vertical quantum dots described in this thesis were fabricated by Guy
Austing, who kindly provided the photos on the cover, Takashi Honda and Seigo
Tarucha at NTT Basic Research Laboratories. I have been very fortunate to
work with you. The year that Tarucha-san visited was enjoyable and turned
out to be very valuable. Also from NTT visited Toshimasa Fujisawa, once our
main competitor, with his lateral double dot sample. Measuring his double dot
in our fridge, we could finally see the artificial molecule that we had been look-
ing for so long. The other lateral quantum dots I had inherited from Nijs van
der Vaart, when he left our group. He fabricated them together with Sandra
Godijn and Bram van der Enden. Making good small quantum dots is no small
accomplishment. It is a miracle that their samples have survived for such a long
time.

It was great also to work with other visitors from abroad: Sara Cronenwett,
when I brought the Kondo wine to your thanksgiving dinner I was close to bluff-
ing. 1 am glad it turned out that we had really seen the Kondo effect. Koji
Ishibashi, thank you for coming to measure with us and for bringing your sons
to the lab in the weekends. The sauna in Japan was great. Michel Devoret, your
politeness is examplary, so is your approach to understanding the measurement
data.

In Delft there are a lot of people I would like to thank. First of all there
is Leo Kouwenhoven, my supervisor. I was fortunate to work with you and the
many opportunities you created. Your continuous drive for concrete results has
been very stimulating and productive. Your almost neverending criticism when it
comes to writing has made every paper into a long story. I am glad there was the
fridge where I could always start a new project before finishing the paper. Thank
you also to prof. Hans Mooij, and the other staff members, Kees Harmans, Peter
Hadley, Cees Dekker, Herre van der Zant and Bram van der Enden. I am proud
of QT.

I would like to thank all the QT group members for making it fun to come to
work. In particular I would like to mention Sander Tans, firm believer of Darwin
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Sociology, Luuk Mur, Wilfred van der Wiel, inventor of the Quantum Explosion
Device and director of the Wiellab’s secret work on the artificial atom bomb, and
my office mates Caspar van der Wal, Nijs van der Vaart, Erik Visscher, Henk
Postma and Yann Kervennic.

I thank Bram van der Enden (’that will take about two weeks’), Leo Lander,
Wim Schot, Willem den Braver (I never really ran out of helium), Gerard van der
Gaag, Masscha van Oossanen and Anneke Delsing, for their technical assitance.
I never learned how a pump works, I just press the button. If that doesn’t help,
I call you. I thank Ria van Heeren-van der Kramer for her assistance, travel
arrangements and tea.

There is also life outside QT. On my way to the fridge I had to always pass
the cookies and cake of HF. Thanks to Niels Hovenier, Tjeerd Klaassen and of
course Raymond Schouten, for good small and physics talk on the way to the
fridge. Raymond, thank you for all the electronics.

I also owe very much to the nanophysics group. Thank you to Bart Geerligs,
Pieter Lukey and Jaap Caro for the discussions, pumps, cables and the fridge.

Bram Huis has two hands full of gold. The workshop will never be the same
without him.

Thanks also to the theorists up above. The monday theory meetings that I
attended ("Why do I have to interrogate you like this?’), always made for good
conversation at lunch. Theo Stoof, your laugh I can hear a mile away; Mark
Visscher, the best stop on the way to the library; Yuli 'what is actual orientation
of frog?’ Nagzarov and Gerrit Bauer. The bookclub taught me some respect but
of course the real work is done downstairs.

A lot of hours went into this thesis work. Most of the hours were put in by the
undergraduate students. I want to thank -Armand Koolen, for photon assisted
tunneling. I was very lucky to start my thesis work with you. Your programming
has lasted and has paid off well; -Rob van der Hage, for generalized Hund'’s rule.
The large datafiles you measured have really set a trend. Good luck in moving
large amounts of money; -Jorg Janssen, for the MDD and many other things.
Quenching a magnet at 17.5 Tesla is not something I would like to have done
alone. Thank you for the copper powder filters; -Remko Hijman, for the double
quantum dots. The molecule was too noisy at first but we got it after all; -Martin
Danoesastro, for the excited states. Too bad the Pathfinder landed on Mars when
we published. But now we finally made it onto a cover; -Benno Broer, for the
relaxation times. Manager, consultant and headhunter. You know how to get a
job done. I hope I'll finish my part of the paper soon; -Michiel Uilenreef, for the
magnetization and the inelastic processes in the double dot. We should really
get a temperature controller on our fridge now; -Michael Janus, for the Wigner




viii Preface

crystal that played 'kiekeboe’ with us. You were thorough; Thank you all for so
much Helium. It was a pleasure to work with you.

Thank you also to my family. In 1939 my grandfather got his Ph.D. in physics.
His second son, my father, got his Ph.D. in 1969, in physics. I had a choice.
Hanne, you were the best imaginable distraction during the time I had to write
my thesis.

Jannette, thank you for bearing with me. You were the only one that reliably
predicted the date of my thesis defense a year ago. It is comforting to know I
have someone around, who is always right:

Het duurt altijd langer dan je denkt
ook als je denkt

het zal wel langer duren dan ik denk
dan duurt het toch nog langer

dan je denkt

Maar ook:

Het duurt veel korter dan je denkt
ook als je denkt

het zal wel korter duren dan ik denk
dan duurt het toch

nog korter dan je denkt.

Tjerk Oosterkamp
Delft, December 1998

SDG
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Chapter 1

Introduction

The continuing miniaturization of solid state devices has raised the question
how small transistors can be made without changing their properties. People
interested in making increasingly more powerful computers will try to avoid these
new properties, because things work fine as they are. Judging from the fact
that the increasing performance of computers makes it worthwhile to buy a new
computer every few years, they are quite succesfull at it. Other people prefer

to ask how one can make devices that have fundamentally new properties, and
where these come from.

The new properties that we are particularly interested in are those that arise
from quantum mechanics or the quantization of charge in units of e. Mesoscopic
physics is a subsection of solid state physics and studies systemé with sizes inbe-
tween the microscopic and the macroscopic, where these effects play an important
role. It is a mature field and many material systems and geometries have been
studied. Examples include thin films, quantum point contacts, small supercon-
ducting devices, and many others [1].

This thesis focuses on electron transport through semiconductor quantum
dots. Reviews on this subject can be found in Refs. ?7. Quantum dots are
small conductive areas in a semiconductor, made of roughly a million atoms
with an equivalent number of electrons. Virtually all of the electrons are tightly
bound to the nuclei of the atoms, however, and the number of free electrons in
the dot can be very small; from one to roughly a thousand. Connecting a dot
to current and voltage contacts allows the properties of its free electrons to be
probed by charge-transport measurements. The wavelength of the free electrons
in the dot is comparable to the size of the dot, as is the case for atoms wherc
the wavelength of the electrons orbiting a nucleus is comparable to the size of

the atom. The electrons occupy well defined discrete quantum states and have a
discrete excitation spectrum.
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(a) Lateral (b) Vertical
SOURCE Quantum DRAIN Quantum
. Dot

Figure 1.1: Schematic of a quantum dot, in the shape of a disk, connected to
source and drain contacts by tunnel junctions and to a gate by a capacitor. (a)
shows the lateral geometry and (b) the vertical geometry.

A quantum dot has another characteristic, usually called the charging energy,
which is analogous to the ionization energy of an atom. This is the energy required
to add or remove a single electron from the dot. Because of the analogies to real
atoms, quantum dots are sometimes referred to as artificial atoms [2].

1.1 Quantized charge tunneling

In this section we examine the circumstances under which Coulomb charg-
ing effects are important. Let us consider the electronic properties of the small
conductor depicted in Fig. 1.1a which is coupled to three terminals. Particle
exchange can occur with only two of the terminals, as indicated by the arrows.
These source and drain terminals connect the small conductor to macroscopic
current and voltage meters. The third terminal provides an electrostatic or ca-
pacitive coupling and can be used as a gate electrode. If we first assume that
there is no coupling to the source and drain contacts, then our small conductor
acts as an island for electrons. The number of electrons on this island is an in-
teger N, i.e. the charge on the island is quantized and equal to Ne. If we now
allow tunneling to the source and drain electrodes, then the number of electrons
N adjusts itself until the energy of the whole circuit is minimized.

When tunneling occurs, the charge on the island suddenly changes by the
quantized amount e. The associated change in the Coulomb energy is conve-
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niently expressed in terms of the capacitance C of the island. An extra charge
e changes the electrostatic potential by the charging energy E, = €?/C. This
charging energy becomes important when it exceeds the thermal energy kg7
A second requirement is that the barriers are sufficiently opaque such that the
clectrons are located either in the source, in the drain, or on the island. This
requirement translates to a lower bound for the tunnel resistances R; of the bar-
riers. To see this, consider the typical time to charge or discharge the island
At = R;C. Furthermore, for the charge to be quantized, the energy uncertainty
AE must be much smaller than the charging energy. The Heisenberg uncertainty
relation AEAt = (e?/C)R,C > h then implies that R, should be much larger
than the resistance quantum h/e? = 25.8 k2. To summarize, the two conditions
for observing effects to the discrete nature of charge are[4, 5|:

R, > h/é’ (1.1)
e/C > kgT (1.2)

The first criterion can be met by weakly coupling the dot to the source and
drain leads. The second criterion can be met by making the dot sufficiently small.

While the tunneling of a single charge changes the electrostatic energy of the
island by a discrete value, a voltage V, applied to the gate can change the is-
land’s electrostatic energy in a continuous manner. In terms of charge, tunneling
changes the island’s charge by an integer while the gate voltage induces an effec-
tive continuous charge ¢ = C,V, that represents, in some sense, the charge that
the dot would like to have. This charge is continuous even on the scale of the
elementary charge e. If we sweep Vj the build up of the induced charge will be
compensated in periodic intervals by tunneling of discrete charges onto the dot.
This competition between continuously induced charge and discrete compensa-
tion leads to so-called Coulomb oscillations in a measurement of the current, as
a function of gate voltage at a fixed source drain voltage.

1.2 Samples

In this thesis we have studied GaAs quantum dots formed in two different
geometries, both with their specific advantages. In a vertical quantum dot (Fig.
1.2a and b) the current flows vertically while in a lateral quantum dot (Fig. 1.2¢
and d) the current flows laterally.

Our vertical quantum dot is a miniaturized resonant tunneling diode [7]. The
pillar in Fig. 1.2a is etched from a semiconductor double-barrier heterostructurc
(DBH) and a metal gate electrode is deposited around it. On the InGaAs dot,
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- metal gates

T 10n0m

.
* 2DEG plane

Figure 1.2: a) Schematic and (b) scanning electron microscope (SEM) photo of
the top contact and the gate metal of a vertical quantum dot. The diameter of
the pillar is 0.5 pm. The bottom contact is not visible. c¢) A SEM photo of a
typical lateral quantum dot device defined in a GaAs/AlGaAs heterostructure.
d) Schematic of a lateral sample. The 2DEG is ~ 100 nm below the surface.
Negative voltages applied to the surface gates (i.e. the light areas in ¢ ) deplete the
9DEG underneath. The resulting dot contains a few electrons which are coupled
via tunnel barriers to the large 2DEG regions. The tunnel barriers can be tuned
individually with the voltages applied to the left/right pair of gates.

that is located between the two AlGaAs barriers, the electrons are confined in
all three directions. Electrons can tunnel vertically through the barriers, which
allows a current to flow. The number of electrons on the dot can be tuned by
the voltage applied to the gate. They show very good symmetry and the number
of electrons on the dot can be reduced down to zero. Because the barriers are
due to the larger bandgap of AlGaAs, the barriers are not influenced by the gate
voltage applied, unlike in the lateral quantum dots discussed below. Once the
barrier thickness is chosen, however, the tunnelrates from the dot to the leads
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can not be changed.

A lateral quantum dot is patterned from a two dimensional electron gas
(2DEG) that is formed in a GaAs/AlGaAs heterostructure. When an AlGaAs
crystal is grown on top of a GaAs crystal, the electrons coming from remote
dopants form a 2DEG in the potential minimum that occurs at the interface be-
tween the two crystals, approximately 100 nm below the surface. The electrons
are then confined in the z-direction and can be confined in the other directions by
a suitable electric field that is applied through metallic gates that are patterned
at the surface (Fig. 1.2c). They have the advantage that the tunnelrates through
the barrier can be tuned by the voltage on the gates forming the tunneling bar-
rier. They do not have the symmetry of the vertical quantum dots, however, and

for small dots the barrier heights tend to change significantly when the electron
number is changed.

1.3 Measurement techniques

To observe the effects of the atom-like orbitals and the charging energy on trans-
port, the thermal energy kg7 must be well below the energy scales of the dot,
which correspond to temperatures of order 1 K (kg7 = 86 peV at 1K). Therefore,
our experiments were performed in a dilution refrigerator that can cool down to
10 mK. Special care must be taken to avoid spurious heating of the electrons in
the device, however. The lowest effective electron temperature that we were able
to achieve in semiconductor quantum dots was ~ 45 mK. Below we give a brief
enumeration of the issues involved in doing these sensitive measurements.

1.3.1 filtering

A significant source of heating is the noise coming from the measurement elec-
tronics. The filters, used to attenuate the noise that arrives at the sample, have
to be effective over a very large band width. They consist of a distributed RC
network, usually a thin resistive wire going through a conducting medium such
as copper powder or silver epoxy. The filters are installed at low temperatures to
minimize the thermal noise of the resistors contained in them. The filters are in-
tegrated with the sample holder in such a way that all sample wires are carefully
shielded once they are filtered (see Fig. 77).
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1.3.2 interference

Another important source of heating is the interference picked up by the wiring
that connects the measurement electronics to the device. Many different sources
of interference can be distinguished. Loops in the electronic circuit need to be
avoided to minimize magnetic pick up. All wires have to be carefully shielded to
prevent them from being effective antennas for the radio and telecommunications
signals filling the ether (0.1 MHz - 10 GHz). It is important that the circuit is
grounded (connected to the shield) in only one place and that all shields have
low impedance contact with this reference point.

A very significant source of interference in our high impedance samples are
the vibrations of the sample wires. The vibrations tend to inject a current into
the wires: I = fi = %C‘D = C’% + @%, where @ is a potential difference
that includes the difference in workfunctions of the wire metal and the metal of
the ground (usually stainless steel). Due to the vibrations, the capacitance C of
the wires to ground becomes timedependent. If the current doesn’t find a low
impedance path to ground, it will generate a considerable, unwanted voltage drop
over the sample.

1.3.3 sample stability

To allow enough time to measure a reasonably complete set of data, the sample
has to be sufficiently stable. Impurities or surface states that switch from one
state to another are usually held responsible for switching in samples, as they
change the details of the potential landscape in the sample. Some experiments
can not be done if these switches happen more than once every ten minutes.

It is not quite understood which mechanisms cause some samples to be much
more stable than others. The fabrication process is an important factor although
two samples fabricated using identical conditions can have very different stability.
It seems that as the electronic environment of the sample becomes more quiet the
stability improves. Therefore a quiet set-up with low noise and little interference
pays double. It not only allows one to measure faster because a larger bandwidth
can be used, at the same time it also allows more time to measure between
switches.

A separate issue is the lifespan of the samples. Since the samples are very
small, a voltage transient picked up by the wires going to the sample may lead
to large electric fields within the sample, which may fatally damage it. The
sensitivity of the sample to electric discharges or other interference combined
with the effort it takes to fabricate them has made experimentalists very cautious
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when mounting a sample, previous to a cooldown. It has driven some people to
take off their shoes when mounting samples. It is not clear whether this is out of
superstitious beliefs or to prevent electrical discharges.

1.3.4 measurement electronics

The most crucial parts of the measurement electronics (the bias DACs for the
gates, the low noise voltage source, and the current to voltage amplifier) are de-
signed by Raymond Schouten and homebuilt. They are either battery powered or
decoupled from the mains by separate transformers to reduce crosstalk of tran-
sients on the main power line to the electronics. They are galvanically decoupled
from the conventional data acquisition electronics {oscilloscope, lock-in amplifier,
multimeters, computer) through optical (fiber) links.

Special attention was given to the low noise current to voltage amplifier, to
achieve a low equivalent input current noise (3-5 fA/Hz2) and to overcome the
stability problems of the amplifier associated with the large capacitance of the
sample wires to ground.

1.3.5 high frequency coax

In order to do the high frequency experiments described in chapters 6 and 7
of this thesis, the dilution refrigerator was fitted with a coaxial cable (diameter
.085 inch; all connectors used were 2.4 mm connectors from Hewlett Packard,
which are specified up to 50 GHz). From a vacuum sealed connector at room
temperature to the 1K-pot, a .085” semi rigid Be-Cu (inner and outer conductor)
coaxial cable was used. Its outer conductor is thermally anchored at 4K. To cool
the inner conductor also, a microwave attenuator is fitted at 1K.

From the 1K-pot to the mixing chamber, a .085” semi rigid stainless steel
(inner and outer conductor) coaxial cable is used. Another microwave attenuator
is fitted at the mixing chamber. Typically very little microwave power (pW -
nW) is needed at the sample. Depending on the power available at the microwave
source and the frequency range that is used in the experiment the value for the
attenuation at the 1K-pot (3-10 dB) and at the mixing chamber (10-30 dB) arc
chosen. A larger attenuator will reduce the noise that is coupled into the sample
through the coax. If the attenuation is too large, however, the mixing chamber
will be warmed up due to the dissipated power in the attenuator.

From the mixing chamber to the sample, various types of low attenuation
semirigid or flexible coaxial cable can be used because the heat conductivity
through the coax is not a crucial issue anymore. Finally the inner conductor of
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the coaxial cable is capacitatively coupled (1-100 pF) to one of the gates of the
sample.

1.4 This thesis

The outline of this thesis is as follows. Chapters 2 to 4 are devoted to single
vertical quantum dots. In chapter 2 the groundstates of a vertical dot are probed
as a function of magnetic field. We compare the results to various different
models, describing the ’atomic’-orbitals in the quantum dot. In chapter 3 we
have looked at the excited states as well as the ground states and compare them
with numerical calculations. In chapter 4 we investigate the vertical quantum
dot in the quantum Hall regime. At these high magnetic fields interactions are
very important, leading to the formation of a maximum density droplet.

The remaining chapters 5 to 9 are concerned with both single and double
lateral quantum dots. We look at their spectroscopy in chapter 5, their interaction
with time-varying fields in chapter 6 and 7, the 'molecular’-states in a double
quantum dot in chapter 7, the interaction of the electrons with their environment
in chapter 8, and a tuneable Kondo effect in a quantum dot in chapter 9.
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Chapter 1. Introduction.




Chapter 2

Electron ground states in a few-electron
quantum dot

T.H. Oosterkamp, W.G. van der Wiel, L.P. Kouwenhoven,
D.G. Austing, T. Honda and S. Tarucha.

Abstract:

We review the electronic ground states in few-electron quantum dots studied
by measuring Coulomb oscillations in the linear transport regime. The number
of electrons in our vertical quantumn dots are changed one-by-one from zero up
to about a hundred by mecans of the gate voltage. We identify the quantum
numbers of the states by measuring the magnetic field dependence. We find that
transitions in the ground states originate from crossings between single-particle
states and Hund’s rule. Most features can be explained with an extended constant
interaction (CI) model. This model describes the electron-electron interactions

by a charging energy plus an exchange energy which are both independent of
magnetic field.
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2.1 Introduction

Semiconductor quantum dots can be regarded as artificial atoms, since their elec-
tronic properties resemble the ionization energy and discrete excitation spectrum
of atoms [1]. Quantum dots can be fabricated between source and drain contacts
so that the atom-like properties can be probed in current-voltage (I-V) measure-
ments. Additionally, with a gate electrode nearby, one can vary the exact number
of electrons, N, on the quantum dot by changing the gate voltage, V;,. When an
electron is added, the total charge on the dot changes by the elementary charge,
e. The associated energy change, known as the addition energy, is a combination
of the single-electron charging energy and the change in single-particle energy.
Charging effects and discrete single-particle states have been studied in a variety
of quantum dot systems, defined not only in semiconductors but also in metal
grains and molecules [2].

Quantum dot devices usually contain some disorder due to impurities or be-
cause the shape is irregular [2]. Clean quantum dots, in the form of regular
disks, have only recently been fabricated in a semiconductor heterostructure [3].
The circular symmetry of two dimensional (2D) disks gives rise to a 2D shell
structure in the addition energies, analogous to the 3D shell structure in atomic
ionization energies [4]. The 3D spherically symmetric potential around atoms
yields the shells 1s, 2s, 2p, 3s, 3p,.... The ionization energy has a large maxi-
mum for atomic numbers 2, 10, 18,... corresponding to complete filling of a shell.
Up to atomic number 23 these shells are filled sequentially with electrons (i.e.
mixing between shells starts at atomic number 24). Within a shell, Hund’s rule
determines whether a spin-down or a spin-up electron is added [4].

Our vertical quantum dots have the shape of a disk with a diameter roughly
ten times its thickness [3]. We find that their lateral confinement potential has
good cylindrical symmetry with a rather soft boundary profile, which can be
approximated by a harmonic potential. The symmetry of such a 2D harmonic
potential leads to complete filling of 2D shells by 2, 6, 12, .... electrons. This
sequence of electron numbers are the 'magic numbers’ for a 2D harmonic dot.
In this chapter we review the atomic-like properties observed in single-electron
transport. We find unusually large addition energies when the electron number
coincides with a magic number. Furthermore, we can identify the quantum num-
bers of the single-particle states by studying their magnetic field dependence.
At sufficiently small magnetic fields (B < 0.4 T) we see that spin filling obeys
Hund’s rule. At higher magnetic fields we observe that spin-degenerate states are
filled by spin-up electrons alternating with spin-down electrons (i.e. an even-odd
filling of the single-particle states).



2.2. Device parameters and experimental set up 13

The measured addition energies can be understood qualitatively in terms of
an extended constant interaction (CI) model. In the CI model the direct Coulomb
energy, I, between any two electrons on the dot is assumed to be independent of
B. The energy E. = €?/C can be thought of as the charging energy of a single-
electron on a capacitor C. To account for effects like Hund’s rule we extend
the CI model with a constant exchange energy E,;. This extended CI model
qualitatively explains the evolution of the ground state energies with B.

2.2 Device parameters and experimental set up

Our vertical quantum dot is a miniaturized resonant tunneling diode [5]. The
pillar in Fig. 2.1a is etched from a semiconductor double-barrier heterostructure
(DBH) and a metal gate electrode is deposited around it. Electrons are confined
on the dot in all three dimensions. The surface potential together with the gate
potential confines the electrons in the lateral x- and y-directions while the DBH
provides the confinement in the growth z-direction.

The DBH consists of an undoped 12.0-nm Ing¢5GaggsAs well and undoped
Aly22Gag7sAs barriers of thickness 9.0 and 7.5 nm (the thinner one is closest to
the substrate). The source and drain contacts are made from Si doped n-GaAs
which are separated by 3.0 nm undoped GaAs spacer layers from the barriers.
The concentration of the Si dopants increases stepwise, on both sides starting
with 0.75- 1017 em™ at 3 nm away from the barriers and increasing to 2.0 - 10
cm ™2 at 400 nm from the barriers. An electron moving through the conduction
band experiences a varying electrostatic potential landscape due to the changing
band gap in the growth direction. Fig. 2.1b shows the calculated self-consistent
energy profile in the growth direction for the large unpatterned DBH [5, 6].

A key ingredient of this material system is the inclusion of 5% indium in
the IngosGaggsAs well. This lowers the conduction band bottom in the well to
32 meV below the Fermi level of the n-GaAs contacts. From the confinement
potential in the z-direction and the effective mass m* in IngosGag.esAs it follows
that the lowest quantum state in the well is at an energy E, = 26 meV above
the conduction band bottom. This is still 6.1 meV below the Fermi level of the
contacts. To reach equilibrium the well is filled with electrons until the Fermi
level of the dot is as close as possible to the Fermi levels in the contacts. Our
vertical quantum dot system thus contains electrons without applying external
voltages. This is important since it allows to study the linear transport regime;
i.e. the current in response to a very small source-drain voltage, V,,.

Previously, GaAs without indium was used as the well material [7, 8, 9]. The
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Figure 2.1: a) Schematic diagram of the device. The dot is located between the two
heterostructure barriers. b) Self-consistent calculation [6] of the energy diagram of
the unpatterned double barrier heterostructure from which the device is fabricated.
c¢) Schematic energy diagram of the electron states in the dot. Shaded areas
represent the states in the leads which are continuously filled up to the Fermi
levels. A wvoltage, V.a, applied between the source and the drain shifts one Fermi
level relative to the other. Current may flow when the electro-chemical potential
of the dot for a certain number of electrons (solid lines) lies between the Fermi
levels of the leads. d) SEM photo of a circular quantum dot. The diameter of the
pillar is D = 0.5 um.
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lowest state in the well is then above the Fermi level of the contacts. In this
case, it is necessary to apply a large V4 to force electrons into the well and to
obtain a current flow. Subsequently, all experiments then have to be performed
far out of equilibrium, which limits the energy resolution. From these materials
two-terminal [7, 8] as well as three-terminal devices [9] have been fabricated.
These early three-terminal devices could only be studied in the non-linear regime.
Other techniques, in which the barriers are doped with Si, have been successful
to accumulate some electrons in the well [10, 11]. This has the disadvantage that
it introduces strong potential fluctuations in the dot. By optimizing the doping
profile and using capacitance spectroscopy (which allows one barrier to be very
thick), Ashoori et al. [12] succeeded in measuring the linear response of few-
electron quantum dots. However, these capacitance-dots did not show signatures
of circular symmetry. Our new dots allow, for the first time, to study both the
linear and the non-linear response.

To put the gate around the pillar we first define a metal circle with geometrical
diameter D which will serve later as the top contact. The metal circle is then
used as a mask for a dry etch followed by a wet etch to a point just below the
region of the DBH. This etch combination gives the pillar a somewhat smaller
diameter than the top such that evaporation from above deposits the metal gate
on the substrate and against the lower part of the pillar [13]. We find that when
the diameter is around D ~ 0.5 ym we can vary the number of electrons on the
dot, N, one-by-one from 0 to more than 80, by increasing the gate voltage, V.

The electron density in the well follows from self-consistent calculations and is
equal to n, = 1.67-10' m~2, which agrees with n, = 1.7-10'® m~? deduced from
Shubnikov-de Haas oscillations measured on large area (D = 50 pm) devices.
From density times arca we estimate to have about 10 electrons in the dot when
the effective diameter d.;; = 100 nm.

The geometry of our samples leads to strong screening of the Coulomb inter-
actions inside the dot by the metallic regions in the source and drain which are
only 10 nm away. This is illustrated when we compare the self-capacitance with
the total capacitance of the dot. The self-capacitance of a disk with diameter
desy = 100 nm is given by Ciy = 4€,60desy = 50 aF. A measure of the un-
screened Coulomb interactions is the charging energy e?/Cyerr = 4 meV. The real

capacitance is much better approximated by two parallel capacitors between dot

e,-eomiz

and source and drain leads, C = Cs + Cy = 2—3%£ ~ 200 aF. Here d ~ 10nm
is the distance between dot and leads. So, a measure of the screened Coulomb
interactions follows from e?/C = 1 meV; a value four times smaller than in the
unscreened case. Electrons in the dot will thus have a short-range interaction.
The strength of this interaction is further weakened by the finite thickness of the
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disk.

An important parameter for our device is the ratio of the charging energy
to the confinement energy. To estimate the confinement energy we assume a
harmonic potential with an oscillator frequency wo and note that for N ~ 10
electrons the third shell is partially filled. From equating the energy at the
classical turning point to the energy of the third shell (%m*wé%ﬁi? = 3hwy), we
get iiwg = 3 meV. This implies that the separation of the single-particle states is
of order or even larger than the charging energy. This puts vertical dots in a very
different regime compared to lateral quantum dots where the separation between
single-particle states is typically 5 to 10 times smaller than the charging energy
(2].

The well can in good approximation be regarded as a 2D system. The second
quantum state due to confinement in the growth direction is 63 meV above the
Fermi level. This energy is much larger than the lateral confinement energy. As
we already mentioned, the finite thickness of the well has important consequences
for the electron-electron interactions since the thickness of the well (12 nm) is
comparable to the screening length due to the near vicinity of the leads (10 nm).

The devices are mounted in a dilution refrigerator for measurements at 50
mK. Due to external noise and interference, the effective electron temperature
is typically 100-200 mK. We measure the current, I, flowing vertically through
the dot in response to a dc voltage, V4, applied between the source and drain
contacts. The gate voltage V, can typically be varied from -2.5 to +0.7 V. Beyond
these values leakage occurs through the Schottky barrier between the gate and
source. We can use a magnetic field B up to 16 T directed parallel to the current.

2.3 Addition energies and shell filling

Figure 2.2a shows the current as a function of V. Clear Coulomb oscillations
arc observed with each peak corresponding to a change of exactly one electron
on the dot. As we show below, the first peak corresponds to the transition from
0 to 1 electrons on the dot. This means that we know the absolute number of
electrons on the dot; i.e. N = 1 between the 1% and 2™ peaks; N = 2 between
the 2" and 3"¢ peaks, etc. For N <~ 20, the spacings between peaks fluctuate.
This increasing ’irregularity’ for smaller NV has previously been reported for dots
containing a few electrons (7, 8, 9, 10, 11, 12]. In this study, however, we find
that the ’irregularity’ in peak spacings is in fact systematic with respect to N.
In Fig. 2.2b the measured size of the Coulomb gap (i.e. the source-drain
voltage at which current starts to flow) is plotted as a function of gate voltage.
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Figure 2.2: a) Coulomb oscillations in the current vs. gate voltage at B = 0
T observed for a D = 0.5 pm dol. Vg = 150 pV. b) Measured size of the
Coulomb gap versus gate voltage. In the dark diamond shaped areas the device is
in Coulomb blockade. In the light regions current flows. The sizes of the diamonds
directly correspond to the peak spacings in a). c) Addition energy Au(N) vs
electron number ot different magnetic fields for a D = 0.5 um dot. The curves
for B = 0 and 3 T have been given offsets of 2 and 1 meV, respectively for clarity.
The inset shows the same curves without offsets.

The dark regions indicate zero current due to Coulomb blockade, while in the
light regions the Coulomb gap is overcome and current is flowing through the
dot. The vertical V3 = 0 axis corresponds directly to the data in Fig. 2.2a.
Note, for instance, that the peak spacings along the Viy = 0 axis are the same
as the peak spacings for the corresponding N in Fig. 2.2a. The width of the
zero-current region, labeled as N = 0, keeps increasing when we make V, more
negative. This implies that here the dot is indeed empty which allows us to assign
absolute electron numbers to the blockaded regions.

As we discuss in section 2.4, the peak spacing is a measure for the amount of
energy necessary to add an clectron to the dot. Figure 2.2¢ shows the addition
encrgy as a function of N for three different magnetic ficlds. As N is decreased,
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the addition énergy generally becomes larger due to the increase of the Coulomb
interaction as the effective dot size is reduced. We find that the addition energy
at B = 0 T is unusually large for N = 2, 6 and 12. As we discuss below, these
are the expected magic numbers for a 2D harmonic dot with circular symmetry.

In about twenty devices with D between 0.4 and 0.54 yum we find that the
addition energy is unusually large for N = 2 and 6. A large addition energy
for N = 12 is observed in about ten devices. We also observe relatively large
addition energies for N = 4, 9 and sometimes also 16. We note that traces as
in.Fig. 2.2a reproduce in detail (including peak spacings and heights, but not
the precise gate voltages) after we cycle the device to room temperature. In the
remaining part of this paper we focus on one particular D = 0.5 pm device. All
the main features, however, have been reproduced in several other devices.

The observation of the magic numbers at B = 0 implies that the 2D lateral
potential is parabolic within the resolution of our experiments. Note that for any
2D potential with circular symmetry there remains a twofold orbital degeneracy
associated with positive and negative angular momentum states (except for the
lowest energy state which has zero angular momentum). This makes the magic
numbers 2 and 6 very robust. The assumption of a parabolic potential should
be valid when N is small [3, 7, 8]. For larger N, the potential will be flattened
in the center due to screening effects. This could be the reason why we do not
observe the third shell in all of the devices.

2.4 Constant Interaction Model

In this section we introduce the constant interaction CI model that describes the
electronic states of the dot. The CI model is based on two important assumptions.
First, the Coulomb interactions of an electron on the dot with its environment
and with other electrons on the dot are parametrized by a constant capacitance
C. Second, the discrete energy spectrum of a single particle on the dot, which
we discuss in the next section, is not affected by the interactions. The CI model
approximates the total energy U(N) of an N electron dot by

[e(V — No) — CoVi*
55 + 2 Bnu(B) (2.1)

U(N) =

where Nj is the number of electrons on the dot at zero gate voltage. The term
CyV, is a continuous variable and represents the charge that is induced on the
dot by the gate voltage V, through the capacitance C,. The total capacitance
between the dot and the source, drain and gate is C' = Cs + Cy + C,. The last
term is a sum over the occupied states E, ;(B) which are the solutions to the
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single-particle Schrédinger equation described in section 2.5. Note that only the
single-particle states depend on magnetic field.
The electro-chemical potential of the dot is defined as pgx(N) = U(N) —

U(N —1). Electrons can flow from left to right when pg, is between the electro-

chemical potentials, fep: and prign:, of the leads: puepr > praot(N) > pirigne. From
eqn. 2.1 we get the electro-chemical potential of the dot

Ly Go

,deot(N) = (N—N —E)EC—BCVQ'FEN (22)
The addition energy is given by
A/L(N) = udgt(N + 1) — ,udnt(N) = EC + EN+1 — EN (23)

with Ey the topmost filled single-particle state for an N electron dot.

The electro-chemical potential is changed linearly by the gate voltage with a
proportionality factor o = e%ﬂ (see Eqn. 2.2). This « factor also relates the peak
spacing to the addition energy. We define the spacing between the N** Coulomb
peak at V" and the next peak at VV*! as AVy(N) = VN1 — VN The addition
energy follows from Au(N) = aAVy(N).

The inset to Fig. 2.2b illustrates how to determine the « factor from the
slopes of the sides of the Coulomb diamonds: a = \e‘—/[iﬂ‘;}.. Since the gate voltage
changes the dot area, the a factor changes with N. We therefore determine « for
each N. We find that, in the D = 0.5 pm dot, « varies from 57 to 42 meV/V for
N =1to N = 6, and then gradually decreases to 33 meV/V as N approaches 20.
On close inspection we can see that the sides of the diamonds for small N are a
little curved indicating that o changes somewhat even inside a diamond. These
notions on addition energy and peak spacings are valid for any kind of confining
potential. In the next section, we discuss the single-particle states in a specific
potential.

2.5 Single particle states of a 2D harmonic os-
cillator

For the simplest explanation of the 'magic numbers’ we ignore, for the moment,
Coulomb interactions between the electrons on the dot. The familiar spectrum of
a one-dimensional harmonic oscillator E,, = (n+ §)hw becomes E,,; = (2n+|I| +
1) hwp in two dimensions. Here n (= 0, 1, 2,--) is the radial quantum number,
I (=0, %1, & 2,--) is the angular momentum quantum number of the oscillator
and wy is the oscillator frequency.
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The electronic states are expected to be significantly modified by a magnetic
field, B, applied perpendicular to the plane of the dot. The eigenenergies E,,; as
a function of B can be solved analytically for a 2D parabolic confining potential

V(r) = im*wir? [14]

/1 1
Eni(B)=(2n+|l|+ 1)k ng +wi — Elhwc (2.4)

where hwy is the electrostatic confinement energy, hw, = f:ﬁ—? is the cyclotron
energy and m* = 0.067m, is the effective mass in GaAs (hw, = 1.7 meV at
1 T). Since GaAs has a small g-factor (¢ = —0.44 and gupB = 25ueV at 1
T) we can neglect the Zeeman energy. This makes each orbital state two-fold
spin-degenerate.

In Fig. 2.3a we plot E,; vs. B for fwp= 3 meV. It shows that the orbital
degeneracies at B = 0 are lifted in the presence of a B-field. As B is initially
increased from 0 T, a single-particle state with a positive or negative [ shifts
to lower or higher energy, respectively. At B = 0 the lowest energy state has
(n,1) = (0,0) and is twofold spin degenerate. The next state has a double orbital
degeneracy Eyp1 = Ep_;. We denote these degenerate states the second shell.
Including spin degeneracy this shell can contain up to 4 electrons, so it will be
filled when there are 6 electrons on the dot. In the third shell states with quantum
numbers (1,0), (0,2) and (0,-2) are degenerate. With spin this shell may contain
up to 6 electrons, leading to the magic number 12. Note that the degeneracy
of the (1,0) state with the (0,2) and (0,-2) states is lifted if the potential has a
non-parabolic component [16].

When we put 7 non-interacting electrons in the dot and increase B, the Tth
electron will make several transitions into different states. We have indicated
this in Fig. 2.3a with a dashed line. The transitions are from (0, 2) to (0,
-1) at 1.3 T and then to (0, 3) at 2 T. Similar transitions are also seen for
other N. After the last crossing the electrons occupy states forming the lowest
orbital Landau Level which is characterized by the quantum numbers (0, ) with
I > 0. Together with spin we can label the last crossing as filling factor 2; this
in analogy to the quantum Hall effect in a 2D electron gas. In contrast to the
bulk 2D case, the confinement lifts the degeneracy in this Landau level. The
calculated separations between single-particle states at, for example, B = 3 T,
is still quite large (between 1 and 1.5 meV in Fig. 2.3a). If we would speak of
magic numbers at B = 3 T the sequence would simply be 2, 4, 6, 8, etc.

In the CI model a Coulomb charging energy is added to the non-interacting
single-particle states of Eqn. 2.4 to take into account the interaction. The addi-
tion spectrum of a quantum dot then follows from the electro-chemical potential
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Figure 2.3: a) Calculated single-particle energy vs. magnetic field for a parabolic
potential with Awg = 3 meV. Each state is twofold spin-degenerate. The dashed
line indicates the transitions that the 7" and 8" electron on the dot make as the
magnetic field is increased. b) Single particle wavefunctions for different quantum
numbers (n,l) ¢) Magnetic field dependence of the single particle wavefunctions

of quantum numbers (0,0) and (0,1).
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taot(N) (Eqn. 2.2) where the topmost filled state Ey in Fig. 2.3a is added to the
charging energy. The addition spectrum versus B is shown in Fig. 2.4b. Note
that spin-degenerate states are now separated by FE., so each line appears double.
The magic numbers 2, 6, 12, 20, etc. are still visible at B = 0 as enhanced energy
separations which are equal to E. + hwg. An even-odd parity effect is seen at
B = 5 T where the energy separations for N = even are larger than those for
N = odd.

For some applications it is helpful to know the wavefunctions belonging to the
eigenenergies of Eqn. 2.4. They are given by

]. : 1 ! 2 2
il 8) = Z=e e VB L2 (29)

where lp = (h/m*Q)"/? with Q = \/1w? + w3 is the characteristic length and L}
are generalized Laguerre polynomials. The square of the wavefunction |1, (7, ¢) |2
is plotted in Fig. 2.3b for different quantum numbers (n,l). Note that two
wavefunctions with quantum numbers (n, +[) only differ in the phase factor e*¢.
The number of nodes of the wavefunction going out from the center is given by
the radial quantum number n. If the angular momentum quantum number is
not zero there is an additional node at r = 0. The larger |l| the wider the node
around r = 0. When a magnetic field is applied, the characteristic length Iz set
by the oscillator frequency {2 becomes smaller and the extent of the wavefunction
shrinks as is shown in Fig. 2.3c for the square of the wavefunctions with quantum
numbers (0,0) and (0,1). This turns out to be an important effect that leads to
deviations from the CI model when B is changed on a relatively large scale (e.g.
10 T). For example, two electrons in the (0,0) state are pushed closer together
when B is increased which enhances their Coulomb interaction. In this case, E,
will not be completely independent of B.

2.6 Magnetic field dependence of ground states

Fig. 2.4a shows the measured B-field dependence of the positions of the current
peaks. It is constructed from I-V; curves for B increasing from 0 to 3.5 T in
steps of 0.05 T. The evolution of the first 22 current peaks are plotted. The
positions of the first three peaks depend monotonously on B, whereas the other
peaks oscillate up and down a number of times. The number of *wiggles’ increases
with N. Each N = odd peak has a neighbour for (N + 1) = even that wiggles
in-phase. This pairing implies that the N** and (N + 1) electrons occupy the
same single-particle state with opposite spin. We see this pairing up to N = 40.
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Figure 2.4: Plot of the gate voltage positions of the current oscillations vs. mag-
netic field for a dot with D = 0.5 pm. b) Calculated electro-chemical potential
w(N) using the constant interaction (CI) model (Eqn. 2.1), with E. = 2 meV
and hwog = 3 meV.

Around 3 T the peaks have stopped wiggling and now evolve smoothly with
B. Close inspection shows that the peak spacing alternates between ’large’ for
even NV and ’small’ for odd N. This is particularly obvious when we convert peak
spacing to addition encrgics. Then a clear even-odd parity is seen in the addition
energy versus NV at 3 T (sec the middle trace of Fig. 2.2¢c). The amplitude of
the even-odd oscillations is a good measure of the separation between the single-
particle states at 3 T. We observe a slowly decreasing amplitude from ~ 1 to
~ 0.5 meV for N increasing to 40, suggesting that the confining energy decreases
with increasing gate voltage. This trend is also seen in the B dependence of
the last transition (i.e. filling factor 2 which is indicated by x’s). We find that
for larger N the transition into the lowest Landau level occurs at a B-valuc
lower than calculated (note the different field scales of figures 2.4a and b). The
evolution of the *’s saturate at ~ 3 T for N ~ 50 which means that for these
larger electron numbers increasing V; incrcases the arca and N such that the
electron density stays constant. Note that at 4.5 T the addition energy versus N
in Fig. 2.2c becomes smoother, suggesting that the dot becomes more and more
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Figure 2.5: a) Evolution of the 4™, 5", 6" and 7" current peaks with B-field
from =5 to 5 T observed for the D = 0.5 um dot. The original data consist of
current vs. gate voltage traces for different magnetic fields which are offset. b)
Calculated electro-chemical potential pg(N) using the CI model, with E; = 3
meV and hwg = 3 meV.

spin polarized as B is increased.

A more detailed comparison can be made from Fig. 2.5a, which focuses on
the range in B from -5 to 5 T for N =4 to 7. For comparison Fig. 2.5b shows the
calculated addition spectrum. It is clear that the 5" and 6 peaks form a pair.
At 1.3 T the evolution of the 6" peak has a maximum whereas the 7" peak has
a minimum. This corresponds to the crossing of the energy curves of the (0, —1)
and (0,2) quantum states at 1.3 T in Fig. 2.3a. The effective dot diameter when
there are 6 or 7 electrons on the dot is derived from the wavefunctions (d ~ 5l
for (0,2), see Fig. 2.3b). From the estimated confinement potential hwg = 3 meV
it follows that the diameter is about d.ss ~ 100 nm.

A closer look at Fig. 5a shows that peaks 4 and 5 are not exact replicas.
In particular around B = 0, peak 4 has a sharp cusp down while peak 5 has a
cusp up in the range —0.4 < B < 0.4 T. We discuss in the next section that
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this deviation from the CI model results from the exchange interaction between
electrons with parallel spins in the second shell.

2.7 Hund’s rule and exchange energy

We now focus on the evolution of the peak positions near B = 0 T and show
that deviations from the CI model are related to Hund’s rule. Figure 2.6a shows
the B-field dependence of the 3, 4%, 5 and 6" current peaks for a B-field up
to 2 T. The pairing of the 3™ and 4** peaks and the 5 and 6" peaks above
0.4 T is clearly seen. However, we find that below 0.4 T the 3™ and 5" peaks
are paired, and the 4" and 6% peaks are paired. Note that this pairing is also
seen in the pcak heights. The evolution as a pair of the 3" and 5% peaks for
B < 0.4 T is continued by the 3" and 4‘* peaks for B > 0.4 T. Similarly, the
evolution as a pair of the 4'* and 6 peaks for B < 0.4 T is continued by the
5t and 6 peaks for B > 0.4 T. From these observations, we conclude that the
4™ electron undergoes an angular momentum transition from [ = —1to [ =1 at
0.4 T, whereas the 5™ electron undergoes an angular momentum transition from
I =1tol= —1. These ’extra’ transitions can be understood in terms of Hund’s
rule, which states that a degenerate shell of states will be filled by electrons with
parallel spins [4].

To explain the above transitions we need to cxtend the CI model. If we leave
out the contributions from the gate voltage one can write for the total energy
U(N) = iN(N = 1)E. 4+ ¥ Enj — Eezen(0). The last term allows to take into
account a reduction of the total encrgy due to the exchange interaction between
electrons with parallel spins. For simplicity we assume that only electrons in
quantum states with identical radial quantum number and opposite angular mo-
mentum (n, +[) have an appreciable exchange interactions and ignore all other
contributions. Let us first write out explicitly U(N) and u(N) for N from 1 to 6
assuming that spin is always minimized (i.e. total spin S = 1 or 0):

U(1) = Eoo U(2) = Ec + 2Eop

U(g) =3E.+ 2ED’0 + E()11 U(4) =6FE, + ‘ZE0,0 + 2E0’1

U(5) = 10E. + 2Ey0 + 2Ey 1 + Eo 1 — Eezen

U(6) = 16E. + 2Eo + 2Ep 1 + 2Fo 1 — 2Eepen

and

w1)=U(1)-0 = Ey w?2) =U(2) —U(1) = E. + Eyp
u(3) = U@3) — U(2) = 2E, + Eqo, u(4) = U(4) — U(3) = 3E, + Eo,
u(5) =U(5) —U(4) =4E.+ Eo_1 — Eeaen

w(6) =U(6) — U(5) = 5E. + Eo -1 — Eezen
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Figure 2.6: a) Evolution of the 3", 4", 5™ and 6™ current peaks with B-field
from 0 to 2 T. The original data consist of current vs. gate voltage traces for
different magnetic fields which are offset. b) Calculated electrochemical potential
vs. magnetic field for the model including a constant exchange energy as described
in the text. Parameters are E, = 3 meV, hwg = 3 meV and Eegern, = 0.7 meV.

For N = 4 we can also put the 3¢ and 4" electron with parallel spins (i.e.
S = 1) in the separate single-particle states Ep; and Eo ;. In this case we get:
U*(4) = 6E.+2E(0,0)+ E(0,1) 4+ E(0, —1) — Ecgen. The ground state for N = 4
has § = 1if U*(4) < U(4), or Eg_1 — Ep1 = hiwe < Eegen- A transition from
S = 1to S = 0 occurs for larger B-fields. The experimentally observed transition
field B = 0.4 T yields E¢zen, = 0.7 meV.

Below B = 0.4 T not only the electro-chemical potential of N = 4 but also of
N =5 is affected by this extra transition due to Fegzen:

u*(4) =U*(4) —U3) =3E. + Ey -1 — Eezen

w*(5) =U(5) — U*(4) = 4E, + Ep,
Note that u*(4) follows the B-dependence of Ep_; which implies that the 4t
peak should pair with the 6 peak. Similarly, the 5" peak should pair with the
37 peak for B < 0.4 T.

We find a remarkable agreement between what we measure in Fig. 2.6a and
the calculation in Fig. 2.6b if we assume E, = 3 meV and Ee;er = 0.7 meV. In
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Fig. 2.6b we include quantum numbers (n,!) to identify the angular momentum
transitions, and pictorial diagrams to illustrate the spin configurations.

At B = 0 the ground-state addition energies Au(N) = u(N + 1) — u(N)
become:

Au(l) = E; Ap(2) = E.+ Eg1 — Fop Au(3) = E. — Eegen

Ap(4) = Ec + Eegen Aup() = Ec — Eegen
While the peak spacing for N = 2 is enhanced due to the separation in single-
particle energies, the spacing for N = 4 is expected to be larger than the spacings
for N = 3 and 5 by twice the exchange energy 2F..; (= 1.4 meV). These
enhancements are indeed observed in the addition curve for B = 0 in Fig. 2.2b.
Similar bookkeeping as above also explains the enhancements of N = 9 and 16
which correspond to a spin-polarized half-filled third shell (S=3/2) and fourth
shell (S=2), respectively. The above simple example shows that inside a shell
the symmetry can be broken and degeneracies can be lifted due to interactions.
This spin-polarized filling and symmetry-breaking is completely analogous to
Hund’s rule in atomic physics. Although our bookkeeping method is very simple it
explains the data well. Self-consistent calculations of several different approaches
have confirmed this model of constant charging and exchange energies [15, ?].

2.8 Singlet - triplet transition

The CI model assumes that the Coulomb interactions between electrons are
independent of the magnetic field, so that changes in the observed ground state
energies are fully described to changes in the single-particle energies. At larger
B it is essential to include a varying Coulomb interaction {17]. Here, we discuss
this non-constant interaction regime for dots with one to four electrons and B
between 0 and 9 T. In particular, we describe the singlet-triplet (ST) transition
induced by a magnetic field for a dot with two electrons.

For a two-electron dot, we only consider the two lowest single-electron states,
Eyo and Ep,, which arc relevant to the discussion here. For any value of B,
Eyo < Epa and hence the two electrons both occupy the state £y o with opposite
spin; i.e. a singlet, S = 0 state. Including the Zeeman enecrgy, we obtain: Fpo =
Ry/iw? +wd +1g"upB and Eyy = 2hy/3w? + wi — 1w + 1g*upB with g* the
effective Landé factor and pup the Bohr magneton. We now expect a crossing
between Epg | and Ep 1 beyond which the two electrons are spin-polarized; i.e.
a triplet, § = 1 state. For hiwg = 5.6 meV and g* = —0.44 in GaAs, we obtain
a ST transition driven by the Zeeman encrgy at B = 25 T. Note that this
estimate neglects electron-clectron interactions. As we now discuss, the Coulomb
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Figure 2.7: Electro-chemcial potential 11(2) of a two-electron dot as function of
magnetic field (hwo = 5.6 meV, E.(B = 0) = 5 meV). The lower solid curve rep-
resents the CI ground-state electro-chemical potential p'*(2) = Eyo + E, (spins
indicated by arrows), whereas the upper solid curve corresponds to the excited
state, u'vF5(2) = Ey, + E,. The dashed lines schematically represent the situ-
ation in which o B-dependent Coulomb interaction is taken into account. Note
that the dashed lines grow faster than the solid ones. The rise of the lower one is
larger, due to the larger overlap of states when both electrons are in the ground-
state. The upper dashed curve with subtraction of a constant ezchange energy
E., results in the dotted curve p'"(2) = Eg1 + E(B) — Eep. p'(2) and p'1(2)
cross at B ~ 4.5 T. The ground state before and after the singlet-triplet (ST)
transition s indicated by a dashed-dotted line.




2.8. Singlet - triplet transition 29

interactions between the two electrons drive the ST transition to much lower B.

The interdependence of Coulomb interactions and single-particle states be-
comes important when a magnetic field changes the size of the electron states.
As was shown in section 2.5, the size of the DF-states shrinks in the radial di-
rection as B is increased. When two electrons both occupy the Ey, state, the
average distance between them decreases with B and hence the Coulomb inter-
action increases. At some magnetic field it is energetically favorable if one of the
two electrons makes a transition to a state with a larger radius (i.e. from I = 0 to
[ = 1), thereby increasing the average distance between the two electrons. This
transition occurs when the gain in Coulomb energy exceeds the costs in single-
particle energy. So, beside the Zeeman energy, the shrinking of wavefunctions
favors a transition in angular momentum.

Numerical calculations by Wagner et al. [18] have predicted these ST transi-
tions. In our discussion here, we generalize the CI model in order to keep track
of the physics that gives rise to the ST transition. The electro-chemical potential
of a dot containing N electrons was defined above as p(N) = U(N) — U(N — 1)
where U(N) is the total energy of the dot. For an N = 1 dot, UT(1) = Ey is
the exact ground state energy (spins are indicated by arrows). In the CI model,
U™ (2) = 2Eyp + E., so that the ground-state electro-chemical potential is ' (2)
= Fyo + E,. Note that the Coulomb interactions are assumed to be described
by a constant charging energy E.. The first excited state is UThPS(2) = Ey +
Eo1 + E. and p™F5(2) = Ey; + E.. The solid lines in Fig. 2.7 show u'(2) and
pTH#5(2), where we neglect the small contribution of the Zeeman energy.

The next level of approximation is to include the magnetic field dependence
of the charging energy to account for the shrinking wavefunctions. The dashed
curves in Fig. 2.7 rise somewhat faster than the solid curves, reflecting the B-
dependence of the charging energy, E.(B). These dashed lines are schematic
curves and do not result from calculations.

When both electrons occupy the Eqg state their spins must be anti-parallel.
However, if one electron occupies Eyo and the other Fy,, the two electrons can
also take on parallel spins; i.e. the total spin S = 1. In this case, the Coulomb
interaction is reduced by an exchange energy FE., and the corresponding electro-
chemical potential becomes u'"(2) = Ey; + E.(B) — Ee; see the dotted line
in Fig. 2.7. (The exchange energy is due to a deformation of the distribution
functions of Fig. 2.3 for electrons with parallel spin, which yields a reduction
of the Coulomb repulsion.) Importantly, u'*(2) and u!7(2) cross at B ~ 4.5 T
for the parameters chosen in Fig. 2.7. So, while for B < 4.5 T the ground
state energy corresponds to two electrons with anti-parallel spins in the lowest
single-particle state, for B > 4.5 T the ground state has contributions from two
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Figure 2.8: (a) Current measurement as function of gate voltage and magnetic
field (0—9 T in steps of 25 mT) for N =1 to 4 and V,q = 30 uV. The indicated
transitions are discussed in the text. (b) Peak positions extracted from the data in
(a) and shifted towards each other. Gate voltage is converted to electro-chemical
potential.

single-particle states and has total spin S = 1 (the two-electron ground state is
indicated by a dashed-dotted line in Fig. 2.7). Thus, while the Zeeman-driven
transition would occur at 25 T, the electron-electron interactions push the ST
transition to a lower value depending on the confinement (4.5 T in our case) [19].

Capacitance [12] and tunneling [7] spectroscopy have provided evidence for ST
transitions in the two-electron ground state energy. Here, we report the evolution
of the ground-state as well as the first excited state versus B. Fig. 2.8a shows the
linear response Coulomb blockade peaks for N = 0 to 4. The four curves reflect
how the ground state electrochemical potentials u(N) for N = 1 to 4 evolve with
B. We emphasize that, based on the DF-spectrum for non-interacting electrons,
one does not expect transitions or kinks in the B-dependence of u(N) for N =1
to 4. The peak for N = 1 indeed has a smooth B-dependence. For N = 2, 3,
and 4, however, we observe kinks, which are indicated by arrows. These kinks
must arise from interactions not included in the CI model. The left arrow in the
N = 4 trace is due to the destruction of a Hund’s rule state, which has been
discussed previously [17, 3]. To blow up the different kinks, we extracted the
peak positions and converted their values from gate voltage to energy using the
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Figure 2.9: Gray scale plot of 1(Vy, B) for Via = 4 mV. The stripe for the second
electron entering the dot is shown. The ground state and first excited state are
accentuated by dashed curves. The crossing corresponds to the ST transition.

a-factors introduced in section 2.4. The plotted curves in Fig. 2.8b are shifted
towards each other and represent the variation of the electro-chemical potential
with B. The lowest curve for N = 1 shows a smooth [20] increase in energy in
accordance with the expected solid curve for Eyq in Fig. 2.7. The next curve
for N = 2 rises faster with B than the N = 1 curve, which reflects the magnetic
field dependent interaction E.(B) (see lower dashed curve in Fig. 2.7). At 4.5
T, indicated by ”a”, we observe a kink in the N = 2 curve. This is the expected
ST transition. Our choice of shifting the peak position curves for N = 1 and 2
to zero at B = 0 in Fig. 2.8b, allows a direct comparison, and shows a good
agreement with the lower solid curve and the dashed-dotted curve in Fig. 2.7.

For larger source-drain voltage, Vy4, the current peaks become stripes with
a width cqual to V4 (17]. In Fig. 2.9 an I(V,, B) gray scale plot is given of
the N = 2 stripe measured for V;; = 4 mV. The edges of the stripe represent
the ground state electro-chemical potential u(2), which clearly contain the ST
transition at ~ 4.5 T. Within the stripe, we clearly observe the first excited
state. The down-going B-dependence of the first excited state is similar to u!T(2)
(dotted curve in Fig. 2.7). The crossing of the dashed curves in Fig. 2.9 is a
direct observation of a crossing between the first excited state and ground state,
which is in close agreement with Fig. 2.7.

We briefly discuss the N = 3 and 4 curves in Fig. 2.8a, which both contain
two kinks. The left kink (labeled ”b”) in u(3) = U(3) — U(2) is not due to a
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transition in the energy U(3) of the three electron system, but is a remnant of the
two electron ST transition in U(2). The right kink (labeled ”¢”) corresponds to
the transition from U(3) = Ey (1) + Eoo(l) + Eo1(T) + 3E, to the spin-polarized
case U(3) = Eoo(T) + Eo,1(7) + Eo2(1) + 3E.. Detailed analysis shows that also
this transition to increasing total angular momentum and total spin is driven
largely by interactions. Similar transitions occur for the N = 4 system where on
the right of the last kink (labeled ”e”) the system is again in a polarized state
with sequential filling of the angular momentum states: U(4) = Eoo(1) + Eo1(1
) + Eo2(1) + Eos(1) + 6E-.

In conclusion, we use single-electron tunneling spectroscopy to probe elec-
tronic states of a few-electron vertical quantum dot-atom. At zero magnetic field
the addition energy reveals a shell structure associated with a 2D harmonic po-
tential. As a function of magnetic field, current peaks evolve in pairs, arising
from the antiparallel filling of spin-degenerate states. Close to zero magnetic
field, however, this pairing behavior is altered to favour the filling of states with
parallel spins in line with Hund’s rule. The results are in good agreement with an
extended constant interaction model. For the system with two electrons N = 2
we investigate a singlet-triplet transition. In this case the extended constant in-
teraction is not sufficient to explain the value of the magnetic field at which the
transition occurs.
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Netherlands Academy of Arts and Sciences (KNAW).

References

[1] See for reviews in popular magazines: M. Reed, Scientific American 268, 118
(1993); M.A. Kastner, Physics Today 46, 24 (1993); R.C. Ashoori, Nature
379, 413 (1996); C.J.P.M. Harmans, Physics World 5, 50 (March 1992); L.P.
Kouwenhoven and C.M. Marcus, Physics World 11, (June 1998).

[2] See for a review on quantum dots: L.P. Kouwenhoven, C.M. Marcus, P.L.
McEuen, S. Tarucha, R.M. Westervelt and N.S. Wingreen, Electron transport
in quantum dots, in Mesoscopic Electron Transport, edited by L.L. Sohn, G.
Schon and L.P. Kouwenhoven, June 1996 (Kluwer, Series E 345, 1997), p.
105-214; see also: http://vortex.tn.tudelft.nl/~leo/papers/.

[3] S. Tarucha, D.G. Austing, T. Honda, R.J. van der Hage and L.P. Kouwen-



References : 33

hoven, Phys. Rev. Lett. 77, 3613 (1996).

[4] M. Alonso and E.J. Finn, Quantum and Statistical Physics (Addison-Wesley,
1968); L. 1. Schiff, Quantum Mechanics (MacGraw-Hill, 1949).

[5] H. Mizuto and T. Tanoue, The Physics and Applications of Resonant Tun-
neling Diodes, (Cambridge, 1996).

(6] Y. Tokura (private communications).

(7] B. Su, V.J. Goldman and J.E. Cunningham, Phys. Rev. B 46, 7644 (1992);
T. Schmidt, M. Tewordt, R.H. Blick, R.J. Haug, D. Pfannkuche, K. von
Klitzing, A. Forster and H. Liith, Phys. Rev. B 51, 5570 (1995).

[8] M. Tewordt, L. Martin-Moreno, V.J. Law, M.J. Kelly, R. Newbury, M. Pep-

per, D.A. Ritchie, J.E.F. Frost and G.A.C. Jones, Phys. Rev. B 46, 3948
(1992).

9] M.W. Dellow, P.H. Beton, C.J.G.M. Langerak, T.J. Foster, P.C. Main,
L.Eaves, M. Henini, S.P. Beaumont and C.D.W. Wilkinson, Phys. Rev. Lett.
68, 1754 (1992); P. Gueret, N. Blanc, R. Germann and H. Rothuizen, Phys.
Rev. Lett. 68, 1896 (1992).

(10] S. Tarucha, D.G. Austing and T. Honda, Superlattices and Microstructures
18, 121 (1995).

[11] R.C. Ashoori, H.L. Stérmer, J.S. Weiner, L.N. Pfeiffer, S.J. Pearton, K.W.
Baldwin and K.W. West, Phys. Rev. Lett. 68, 3088 (1992).

[12] R.C. Ashoori, H.L. Stérmer, J.S. Weiner, L.N. Pfeiffer, K.W. Baldwin and
K.W. West, Phys. Rev. Lett. 71, 613 (1993).

[13] D.G. Austing, T. Honda, Y. Tokura and S. Tarucha, Jap. J. Appl. Phys.

34, 1320 (1995); D. G. Austing, T. Honda and S. Tarucha, Semicond. Sci.
Technol. 11, 388 (1996).

[14] C. G. Darwin, Proc. Cambridge Philos. Soc. 27, 86 (1930); V. Fock, Z. Phys.
47, 446 (1928).

[15] M. Macucci, K. Hess and G.J. lafrate, Phys. Rev. B 48, 17354 (1993); A.
Natori, M. Fujito, H. Yasunaga, Superlattices and Microstructures 22, 65
(1997); A. Angelucci and A. Tagliacozzo, Phys. Rev. B 56, R7088 (1997); M.
Koskinen, M. Manninen, S.M. Reimann, Phys. Rev. Lett. 79, 1389 (1997);
LH. Lee, V. Rao, R.M. Martin, J.P. Leburton, Phys. Rev. B 57, 9035 (1998):
M. Rontani, F. Rossi, F. Manghi and E. Molinari, Appl. Phys. Lett. 72, 957
(1998).



34 Chapter 2. Electron ground states in a few electron ...

[16] V. Halonen, P. Hyvonen, P. Pietildinen and Tapash Chakraborty, Phys. Rev.
B 53, 6971 (1996).

[17] L.P. Kouwenhoven, T.H. Oosterkamp, M.W.S. Danoesastro, M. Eto, D.G.
Austing, T. Honda, and S. Tarucha, Science 278, 1788 (1997); see also
chapter 3 in this thesis; W.G. van der Wiel, Physica B 256-258, 173-177
(1998).

[18] M. Wagner, U. Merkt, and A.V. Chaplik, Phys. Rev. B 45, 1951 (1992).

[19] An analogous singlet-triplet transition is predicted to occur in He atoms in
the vicinity of white dwarfs and pulsars at B = 4-10° T, see G. Thurner, H.
Herold, H. Ruder, G. Schlicht, and G. Wunner, Phys. Lett. 89 A, 133 (1982).
Due to the larger dimensions, the transition is expected to occur around 4.5
T in our dots.

[20] A small irregularity is visible around 3 T. This feature cannot be ascribed to
a crossing of states in the dot, which is verified at finite source-drain voltages
where both ground and excited states can be distinguished




Chapter 3

Excitation spectra of circular,
few-electron quantum dots
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Abstract:

Studies of the ground and excited states in semiconductor quantum dots contain-
ing 1 to 12 electrons show that the quantum numbers of the states in the exci-
tation spectra can be identified and compared to exact calculations. A magnetic
field induces transitions between ground and excited states. These transitions are
discussed in terms of crossings between single-particle states, singlet-triplet tran-
sitions, spin polarization, and Hund’s rule. These impurity-free quantum dots
allow ”atomic physics” experiments to be performed in magnetic field regimes
not accessible for atoms.
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Small solid state devices known as quantum dots are often referred to as
artificial atoms because their electronic properties resemble, for example, the
ionization energy and discrete excitation spectrum of atoms [1]. Quantum dots
are usually fabricated between source and drain contacts so that the atom-like
properties can be probed in current-voltage (I-V) measurements. Additionally,
with a gate electrode nearby, one can vary the exact number of electrons N on
the quantum dot by changing the gate voltage V;. When an electron is added, the
total charge on the dot changes by the elementary charge e. The associated energy
change, known as the addition energy, is a combination of the single electron
charging energy and the change in single-particle energy. Charging effects and
discrete single-particle states have recently been studied in a variety of quantum
dot systems, defined not only in semiconductors but also in metal grains and
molecules [2].

Quantum dot devices usually contain some disorder caused, for example, by
impurities {2]. Clean quantum dots, in the form of regular disks, have only
recently been fabricated in a semiconductor heterostructure [3,4]. The circular
symmetry of the two dimensional (2D} disks gives rise to a 2D shell structure in
the addition energies, analogous to the 3D shell structure in atomic ionization

energies [5 . Measurements of the ground states have shown that the 2D shells in
dots are filled according to Hund’s rule [4]: Up to half shell filling, all electrons

have parallel spins; more electrons can only be added with antiparallel spins. We
now report the excitation spectra for dots with different numbers of electrons and
identify the quantum numbers of the excited states. We also show the relation
between spectra of successive N and how the spectra evolve with an applied
magnetic field B. The relatively large dimension of quantum dots (~100 nm)
allows one to use accessible B-fields that would correspond in real atoms to
inaccessible fields of the order 106 T.

Fig. 3.1a shows a schematic drawing of the device which, from bottom to top,
consists of an n-doped GaAs substrate, undoped layers of 7.5 nm Al 90Gag 7gAs,
12 nm Ingg5GaggsAs, 9.0 nm AlyoGag 7sAs, and a ~500 nm n-doped GaAs top
layer. A sub-micrometer pillar is fabricated using electron-beam lithography and
etching techniques [3]. Source and drain wires are connected to the top and
substrate contacts and a third wire is attached to the metal side gate which is
placed around the pillar. The energy landscape is shown in Fig. 3.1b. The
AlGaAs layers are insulating, but thin enough to allow for tunneling from the
source to drain through the central, disk-shaped InGaAs layer. By making V,
more negative the effective diameter of this disk can be reduced from a few
hundred nanometers down to zero, decreasing N one-by-one from ~70 to zero. At
a particular V,, we can probe the excitation spectrum by increasing the source-
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Figure 3.1: (a) Schematic of the semiconductor layers and the metal side gate.
The diameter of the pillar is 0.5 pm. (b) Schematic energy (horizontal axis)
diagram along the vertical azis of the pillar. Hatched regions are occupied electron
states in the source and drain contacts. For the case shown, two electrons are
permanently trapped in the quantum dot. The third electron can choose to tunnel
through the N = 3 ground state (solid line) or through one of the two excited
states which lie in the transport window. This situation corresponds to the N = 3
current stripe.

drain voltage, V54, which opens up a transport window between the Fermi energies
of the source and drain. Only ground states and excited states lying within this
energy window contribute to I (see Fig. 3.1b). When Vj is increased, the levels
in Fig. 3.1b shift down in energy; when an extra state moves through the Fermi
energy of the drain I increascs. Unlike atoms, excitations do not occur inside the
dot by, for instance, absorption of radiation. For dots, excitations are created
when an electron tunnels out from the ground state and the next electron tunnels
in to an excited state. The devices are measured in a dilution refrigerator with
the temperature set at 100 mK.

The differential conductance I/V,q as a function of V,4 and V; is shown in Fig.
3.2 for N increasing from 0 to 12. Along the V4 = 0 axis N changes to N + 1
when adjacent diamond-shaped regions of zero current touch. The size of the
diamonds is a measure of the minimum energy to add or subtract an electron.
The diamonds for N = 2, 6, and 12 are unusually large, which correspond to filled
shells [4]. At the two upper edges of the N electron diamond, an extra electron
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Source-Drain Voltage (mV)

Figure 3.2: Differential conductance I1/Vyq plotted in color scale in the V, — Vi
plane at B = 0. In the white diamond shaped regions, I /V,q =~ 0 due to Coulomb
blockade. N is fized in each of the diamond regions. The lines outside the dia-
monds, running parallel to the sides, identify excited states.
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Gate Voltage (V)

Magnetic Field (T)

Figure 3.3: 1(V,, B) for N =0 to 4 and a part of N = 5 measured with Vg = 3
meV. I < 0.1 pA in the dark blue regions and I > 10 pA in the dark red regions.
Both ground states and the first few excited states can contribute to the current.
Current stripes between the Coulomb blockade regions (dark blue) for N — 1 and
N electrons are called the N electron stripe throughout the report.

can tunnel through the dot via the N + 1 electron ground state. Excited states
of the N + 1 electron system that enter the transport window are seen as ”lines”
running parallel to the upper edges of the diamond. At the two lower edges
of a diamond, an electron can tunnel out of the dot (N to N — 1 transitions).
However, some of the lines outside the diamonds in Fig. 3.2 could be due to
fluctuations in the density of states in the narrow leads [6,7]. Below we show
that we can distinguish between lead and disk states by measuring I(V,,B) for
different values for V,; and for B being parallel to 1.
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Figure 3.4: I(Vg,B) for N = 0 to 5 measured with small Vg = 0.1 meV such
that only ground states contribute to the current. Ground state transitions are
indicated by different labels. The arrows in the squares indicate the spin con-
figuration. The lowest square corresponds to a single-particle state with angular
momentum [ = 0. For squares to the right | increases to 1, 2, 3, etc. For N =4
and 5, near B = 0, also the | = —1 square is shown on the left of the | = 0
square. For N = 3 there are two important configurations for the occupation of
single-particle states in the region between the two kinks.




41

Fig. 3.4 shows the B-field dependence of the ground states. We have taken
Viq = 0.1 mV so that only ground states can lie within the transport window. The
observed peaks in the current at B = 0 directly correspond to where the N = 0
to N =5 diamonds touch each other in Fig. 3.2. The B-field dependence of the
peak positions in gate voltage reflects the evolution of the ground state energies.
Besides an overall smooth B-field dependence, we observe several kinks which
we have labeled. For the regions between kinks, we can identify the quantum
numbers, including the spin configurations.

Increasing Vyq to 3 mV yields the data summarized in Fig. 3.3 [8]. The
transport window is such that I is non-zero over wider V, ranges. Instead of the
"sharp” current peaks as in Fig. 3.4, we now observe "stripes”. Adjacent stripes
somctimes overlap, implying that here eV, exceeds the addition energy. The
lower edge of the N current stripe (which lies between the Coulomb blockade
regions of N — 1 and N electrons) measures when the ground state of the N
electron dot enters the transport window as V; is made more positive. Inside
a stripe, the somewhat random-looking and less-pronounced changes in I are
attributed to fluctuations in the density of states in the leads [6]. However, also
inside the stripes changes in I can be seen as pronounced curves, which we will
argue are the excited states in the dot.

For N = 1, a transport window of 3 meV is too small to observe the excitations
clearly. Therefore, we show in Fig. 3.5a the N = 1 stripe and a part of the N = 2
stripe for Vyg = 5 mV. For this voltage, the N = 1 and 2 stripes just touch at
B = 0. A pronounced change in I [that is, from blue (< 1 pA) to dark red
(> 10 pA)] occurs at the upper edge of the N = 1 stripe at B = 0.2 T. This
change identifies the first excited state for the N = 1 dot [we discuss the index
(0,1) below]. At higher B values higher excited states also enter the stripe. The
cnergy separation between ground state and first excited state can be read from
the relative position inside the stripe. For instance, when the first excited state is
two-thirds of the width of the stripe away from the ground state, the excitation
energy is two-thirds of eV,,. So, the excitation energy is 5 meV at B = 0 and
decrecases for increasing B. Even over this wide B range of 16 T, the first excited
state never crosses with the ground state. Below 4 T, the excitation energy
exceeds 3 meV and therefore the first excited state only starts to become visible
for B > 4 T in the first stripe of Fig. 3.3.

In the second, N = 2, stripe in Fig. 3.3, we see the first excited state crossing
the ground state at B = 4.15 T; that is, the first excited state for B < 4.15 T
(seen as the change in 7 from blue to red inside the second stripe) becomes the
ground state for B > 4.15 T. The kink labeled by the triangle in Fig. 3.4 also
denotes this crossing. For N = 3 and 4, we also observe a crossing at 1.7 T in the
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Figure 3.5: a) I(V,, B) for N =1 and 2 measured with V,3 =5 meV up to 16 T.
The states in the N = 1 stripe are indexed by the quantum numbers (n,l). (b)

Surface plot of the N = 4 stripe measured with Vg = 1.6 meV up to 2 T.
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middle of the third and fourth stripes in Fig. 3.3 between an up-going excited
state and a down-going excited state. A similar up and-down going crossing is
seen in the ground state for N = 5 at 1.2 T (see also the kink in Fig. 3.4 labeled
by the diamond).

To describe the electron states in a quantum dot, we must calculate the energy
spectrum U(N, B). In our experiment we measure the electrochemical potential
of the quantum dot which is defined as p(N) = U(N) — U(N — 1). For a few
electrons, U(N, B) can be calculated exactly, including the Coulomb interactions
[9]. However, it is easier to explain the experimental results when we first consider
the spectrum of non-interacting electrons in a 2D circular disk. The thickness
of the thin disk freezes the electrons in the lowest state in the vertical direction.
We therefore only have to consider the confinement in the plane of the disk. For
this we take a parabolic potential V(r) = im*wir?, where m* = 0.06my is the
effective mass of electrons in our InGaAs disk. The single-particle eigenenergics
with radial quantum number n = 0, 1, 2,. and angular momentum quantum
number [ = 0, £1, £2,... are given by [10]:

1 1
E.;=(@n+ ||+ 1)h\/zw3 + wi — Elfuuc (3.1)

where the cyclotron frequency w, = eB/m* and # is Planck’s constant divided
by 27. We neglect the much smaller Zeeman energy. The first few spin-degenerate
states, E,,;, are plotted in Fig. 3.6a for a confinement energy wy = 5 meV. The
two thick solid lines identify the transport window relative to the (0,0) curve for
Ve = 5 mV. The states within this stripe can be compared to the changes in
seen in the N = 1 stripe in Fig. 3.5a. The agreement is not uncxpected because
the non-interacting model of Eq. 3.1 is in fact exact for N = 1. We note that
Eq. 3.1 with wg = 5 meV fits both the ground state and the first excited state
very well up to about 7 T [11].

If we first neglect Coulomb interactions for N = 2, then the two-electron
ground state energy is given by U(N = 2) = 2Ep and the measured value for
w(2) = U(2) — U(1) = Eyp = p(1). The simplest way to include interactions
is to assume that the Coulomb energy E. is independent of B. In this constant
interaction model, p(2)— p(1) = E.; implying that the first and second peaks in /
are scparated by a constant V; and both peaks have the same B-field dependence.
The constant interaction model has been successful in describing most Coulomb
blockade experiments [1,2]. However, we see in Figs. 3.4 and 3.3 that the N =1
and 2 ground states evolve differently with B. In particular, while Eyq is the
N = 1 ground state over the entire B range, a transition occurs at 4.15 T in
the N = 2 ground state. To explain this transition we have to consider that the



44 Chapter 3. Excitation spectra...

! = 0 orbits shrink in size when B is turned on. Two electrons in a shrinking
[ = 0 orbit experience an increasing Coulomb interaction. (We indeed observe in
Fig. 3.4 that the second peak increases faster with B compared to the first peak.)
The increasing Coulomb interaction will, at some B value, force one of the two
electrons to occupy the larger | = 1 orbit. This transition costs kinetic energy
Ey, — Egy, but it reduces the Coulomb interaction because of the larger spatial
separation between the two electrons. In addition, the system gains exchange
energy when the two electrons take on parallel spins. The transition in angular
momentum is thus accompanied by a transition in the total spin from the singlet
S = 0 to the triplet state S = 1. An analogous singlet-triplet (S-T) transition
is predicted to occur in He atoms in the vicinity of white dwarfs and pulsars at
B = 4x10° T [12]. Because of the much larger size of our artificial atoms, the
transition occurs at accessible fields of a few Tesla. This effect was first predicted
by Wagner et al. [13] and evidence for the S-T crossing has been seen [14].

The exact calculation in Fig. 3.6b of u(N) for the N = 2 to 5 ground states
and first two excited states shows extra transitions between many-body states
that are not included in the single-particle states of Eq. 3.1 [15]. The S-T
transition for N = 2 is one such example [16]. In Fig. 3.6a, Eoo never crosses
with Eg;, whereas in Fig. 3.6b a transition labeled by a triangle occurs between
the first (dashed) excited state and (solid) ground state at w, = 1.5wq. For wy = 5
meV, this S-T transition is expected at B = 4.2 T ( the experimental value is
4.15 T). The calculated second (dotted) excited state in Fig. 3.6b for N = 2
can also be seen in the second stripe of Fig. 3.5a (the line between blue and red
current regions which has a maximum near ~2 T).

We now discuss transitions between the first excited state and the ground state
for N = 3, 4, and 5. The ground state for NV = 3 has two transitions labeled by
circles. On increasing B, the total spin, S, and total angular momentum, M, of
the many-body states changes from (S, M) = (3,1) to (3,2) to (3/2,3). These
transitions to larger angular momentum states reduce the Coulomb interactions
[1]. In addition, the spin increases in order to gain exchange energy. A double
transition in the ground state energy is indeed observed as two kinks in the N = 3
trace of Fig. 3.4. In most regions in Fig. 3.4, there is one main configuration for
the occupation of single-particle states. For N = 3, in the region between the two
circles, there are two important configurations, which both have the same S and
M. In a similar way, the N = 4 and 5 ground states make transitions to higher
angular momentum states and an increasing total spin when B is increased. The
occupation of many-body states in the region between the two circles is hard
to determine because in this region different states lie very close in energy (see
Fig. 3.6b). For B larger than the right circles, there is again a clear ground
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Energy E, (meV)

Electrochemical Potential (hey)

Figurc 3.6: a) Calculated energy spectrum from Eq. 8.1 for N=1 and wy = 5
meV. The lowest thick line is the ground state energy. The upper thick line is
the ground state energy shifted upwards by 5 meV. Dashed states between the two
thick lines can be seen in the experimental stripe for N =1 in Fig. 3.5. (b) Ezact
calculation of energy spectra for N = 2 to 5. Current stripes of width 0.66hwy are
bounded by solid lines. The Coulomb blockade regions are hatched. For wy = 5
meV, w, = wqy corresponds to 2.8 T. The square, circle, triangle and diamond
symbols indicate the same transitions as in Fig. 3.4.

state where electrons are fully spin-polarized and they occupy successive angular
momentum states.

A different type of crossing is between two excited states (crossings inside
a stripc). We now argue that the crossing between two excited states in the
N = 3 and 4 stripes labeled by diamonds in Fig. 3.6b is a crossing between
single-particle states. For non-interacting electrons, we expect from Fig. 3.6a
that £y and Ey; are the two occupied single-particle states in the ground states
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for both N = 3 and 4. The first excited state is Eo_1 for B < 2 T and Eq,
for B > 2 T. Together with the ground state they form a triangle. The same
triangular shape is observed in both the N = 3 and N = 4 stripes in Fig. 3.3
where it has a maximum near 1.7 T. Continuing these arguments we expect the
transition in'the first excited state for N = 3 and 4 to become a transition in the
ground state for N = 5. Indeed this is seen in Fig. 3.3 and at the kink labeled by
the diamond in Fig. 3.4 (this transition in / from -1 to 2 is indicated in Fig. 3.4
in the diagrams adjacent to this kink). We emphasize that the discussion of the
above crossings demonstrates a direct relation between the excitation spectrum
of an N electron system with the ground state of the N + 1 electron system [17].

The last crossing we discuss is indicated by the square in Fig. 3.4. We
have identified this crossing earlier [4] as a manifestation of Hund’s rule. As the
adjacent spin diagrams show for the third and fourth electrons a transition from
parallel spins (in accordance with Hund’s rule) to antiparallel spins occurs. When
the states Eg and Ey_; are sufficiently close, there is an energy gain due to the
exchange interaction between electrons with parallel spins. As B is increased,
Fy: and Ep_, diverge from each other (see Fig. 3.6a) and at some value a
transition is made to antiparallel spins where the third and fourth electrons both
occupy Fp;. Fig. 3.5b shows a surface plot of the N = 4 stripe measured at
Via = 1.6 mV. This surface plot shows the B dependence of the single-particle
states Ep1 and Ep_; including a Hund’s rule crossing between the ground state
and first excited state at 0.4 T. Interestingly, a second excited state is seen with a
B dependence parallel to the first excited state. Parallel first and second excited
states are also seen in the calculation of Fig. 3.6b (see just above and below the
square label in the N = 4 stripe). The difference between the two parallel lines is
that in the lower energy line the third and fourth electrons have parallel spins (in
accordance with Hund’s rule) and in the higher energy line they have antiparallel
spins. The energy difference is a direct measure of the exchange energy. From
the experimental N = 4 stripe in Fig. 3.3 we can read directly that the gain in
exchange energy is ~1 meV.
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Chapter 4

Stability of the maximum density
droplet in quantum dots at high
magnetic fields

T.H. Oosterkamp, J.W. Janssen, L.P. Kouwenhoven,
D.G. Austing, T. Honda and S. Tarucha.

Abstract:

We have measured electron transport through a vertical quantum dot containing
a tunable number of electrons between 0 and 40. Over some region in magnetic
field the electrons are spin polarized and occupy successive angular momentum
states, i.e. the maximum density droplet (MDD) state. The stability region where
the MDD state is the ground state, decreases for increasing electron number.
The instability of the MDD is accompanied by a redistribution of charge which
increases the area of the electron droplet.
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Quantum dots are small semiconductor devices containing a tunable number
of electrons that occupy discrete quantum states. Their properties combine re-
markable similarities to atoms with the flexibility to study the energy spectra
for different shapes and sizes of the confinement potential [1, 2]. The electron
orbits are significantly modified in a magnetic field of a few Tesla. In a large
2D electron gas (2DEG) the scale of a few Tesla corresponds to the quantum
Hall regime. In this letter we study quantum dots in the quantum Hall regime
and exploit the fact that dots contain a tunable and well-defined number of elec-
trons. In particular, we focus on the spin-polarized, maximum-density-droplet
state that corresponds to filling factor ¥ = 1 in a 2DEG. The stability of this
spin-polarized state is set by a balance of forces acting on this finite electron
system; namely the inward force of the confining potential, the repulsive force of
the direct Coulomb interaction between electrons, and a binding force due to the
exchange interaction. By tuning the relative strengths of these forces with the
magnetic field and the electron number, we study transitions which reconstruct
the charge distribution of this many-body system.

Our vertical quantum dot is made from a double barrier resonant tunneling
structure with an InGaAs well, AlGaAs barriers, and n-doped GaAs source and
drain contacts [3]. The heterostructure is processed in the shape of a submicron
circular pillar with a diameter of 0.54 ym and a self-aligned gate around it.
We discuss data taken on one particular device but comparable results have
been obtained on several devices. A magnetic field, B, is applied parallel to
the tunneling current (i.e. perpendicular to the plane in which the electrons are
confined). The energy spectrum of the quantum dot is derived from transport
experiments at a temperature of 100 mK in the Coulomb blockade regime. A
small dc source-drain voltage, Vsp, is applied and the current, I, is measured
versus gate voltage, V;, which reduces the electron number, N, from about 40 at
V, =0 to N =0 at the pinch-off voltage, V, = -2.5 V.

Figure 4.1 shows the Coulomb blockade current peaks versus B for N = 0 to
18. On increasing Vj, current peaks are measured for every extra electron that
enters the dot. Figure 4.1 consists of many such current traces that have been
offset horizontally by a value corresponding to B. The peaks are seen to evolve
in pairs for B < 2 T, implying that each single-particle state is filled with two
electrons of opposite spin [4]. Kinks indicate crossings between single-particle
states. The dotted line marks the evolution of the B-value at which all electrons
occupy spin-degenerate states belonging to the lowest orbital Landau level (i.e.
this corresponds to ¥ = 2 in a 2DEG). As B is increased further it becomes
energetically favorable for an electron to flip its spin and move to the edge of the
dot (see left diagram above Fig. 4.1). States at the edge have a larger angular
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Figure 4.1: Magnetic field evolution of the Coulomb blockade peaks for the first
18 electrons (Vsp = 100 pV ). The figure 1s built up of many current traces versus
Vy (from —2.1 V to —0.8 V) that have been offset by a value proportional to B.
The solid (open) dots mark the beginning (end) of the MDD, which for N = 2
is the singlet-triplet transition. The dotted line indicates filling factor v = 2.
Top: schematic diagrams of the spin flip processes (left) and of the MDD at two
B-fields (middle and right). Inset: schematic diagrams of three possible lower
density droplet (LDD) states, with a hole in the center of the dot, at the edge, or
a spintexture.
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momentum and a higher orbital energy. This increase is compensated by a gain
in exchange energy due to the increase in the total spin and also by the reduction
in direct Coulomb energy since the electrons are farther apart after the spin-flip.
In this 1 < v < 2 regime, the confinement energy favors a compact electron
distribution, while the direct Coulomb repulsion and exchange effects favor a
diffuse occupation. As B is increased, the cost in orbital energy becomes smaller
and one by one all the electrons become spin-polarized. From experimental [5] and
theoretical [6, 7] studies it has become clear that self-consistency and exchange
correlation are essential for quantitatively describing these spin-flip processes.
After the last spin-flip (filled circles in Fig. 4.1) all electrons are spin-polarized
(i.e. the total spin S = N/2) and the filling factor » = 1. Here, the N electrons
occupy successive angular momentum states and the total angular momentum
M = IN(N —1). This is the most dense, spin-polarized electron configuration
allowed by the available quantum states and is therefore referred to as the max-
imum density droplet (MDD) [8]. Its observation was reviewed in Ref. [1]. For
N = 2 the spin-flip corresponds to a singlet (S = 0) to triplet (S = 1) transition
where simultaneously M changes from 0 to 1 [9]. Also, the transitions in the N
= 3 to 6 traces have been identified as increases in S and M until the MDD is
reached at the solid circle in Fig. 4.1 [10]. For larger N the beginning of the
MDD first moves to larger B and then becomes roughly independent of N.
Once all electrons are spin-polarized (middle diagram above Fig. 4.1), the
role of the exchange interaction reverses. The compact MDD state maximizes
the overlap between the single-particle wavefunctions which are now occupied by
electrons with parallel spins. This maximizes the gain in exchange energy, so that
now exchange acts as a binding force. The direct Coulomb interaction continues
to favor a diffuse occupation. When B is increased further the angular momentum
states shrink in size such that the density of the MDD increases. We have pictured
this in the right diagram above Fig. 4.1 as an electron droplet that does not spread
out over the full available area of the confining potential. At some threshold B-
value (open circles) the direct Coulomb interaction has become so large that
the MDD breaks apart into a lower density droplet (LDD). Assuming that the
droplet remains spin-polarized (S = N/2) this implies that no longer all succesive
angular momentum states are occupied and that M > I N(N —1). Whether the
unoccupied angular momentum states are located in the center [8] or at the edge
[11] (see inset to Fig. 4.1) depends on the relative strengths of the confinement,
exchange, and direct Coulomb interactions. It has also been suggested, especially
when the Zeeman energy is small, that the MDD may become unstable towards
the formation of a spin-texture [12]. The stability conditions for the MDD state
(i.e. the B-range between solid and open circles) has been calculated in several
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Figure 4.2: a) Peak positions versus B for N = 12 to 39 extracted from a dataset
as in Fig. 4.1 (V, is swept from —0.9 to —0.1 V). Open and closed circles mark
the same transitions as in Fig. 4.1. Dotted lines indicate additional steps. (b)
and (c¢c) Greyscale plots of the current versus V, for B-values in a small interval
around the step at the end of the MDD. Vi3 = 100 pV in (b) and 300 uV in (c).
The arrows in (c) highlight that the peak width after the step is larger than before
the step.

different theoretical approaches [7, 8, 13]. In our samples the direct Coulomb
interaction is strongly screened by the electrons in the source and drain contacts.
Since all theoretical works use an unscreened Coulomb interaction it is difficult
to make a quantitative comparison. However, as we will now discuss, our data
indicates that the MDD indeed abruptly changes into a droplet of larger area.

Fig. 4.2a shows the peak positions versus B for larger N. The kinks in the
peak evolution that mark the boundaries of the MDD for small N, turn into
abrupt steps for N 2> 10. Within the boundaries of solid and open circles a new
transition seems to develop for N > 15. This may indicate a new clectronic
configuration that limits the extent of the region where the MDD is the ground
state. Also this transition becomes a step as N is increased. In addition, another
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Figure 4.3: Greyscale plots of dI/dVsp in the V; — Vgp plane for ten B-values
before, during, and after a particular step corresponding to different charge dis-
tributions (—1 mV < Vgp < +1 mV and —042 V <V, < —0.32 V). N =31
is marked by a solid diamond. The Coulomb blockade regions at the lowest and
highest B-field have the familiar diamond shapes. In between, the Coulomb block-
ade regions are severely distorted. Fixcited state transitions are visible as dark
lines [17]. As B is changed these evolve into the edges of the regular Coulomb
blockade diamonds at the lowest and highest B-field.

step, marked with the dotted oval, can be discerned in Fig. 4.2a.

Fig. 4.2b and 4.2c show the current versus Vg (N = 27 to 31) in greyscale for
B-values around the step at the end of the MDD. For Vgp = 100 1V the peaks
are much narrower than their spacings and the step width is about 50 mT. An
increased source-drain voltage Vgp = 300 1V broadens the peaks. The important
point is that the peak width, AV,, increases by about 10 % after crossing the
step as indicated by the arrows. At low temperature aAV, = eVsp, where the
a-factor is roughly proportional to the inverse of the area of the droplet [14]. The
change in peak width implies that while passing through the step the dot area
changes abruptly by about 10 %.

It is clearly seen in Fig. 4.2c that the peak width during the step is about
twice the width outside the step region. Other steps also show this behaviour.
To study the nature of these unusual steps we have measured the excitation
spectra. Fig. 4 presents df/dVsp in the Vsp-V, plane for ten B-values around a
particular step [15]. (In this case the step separates two LDD regions that have
different charge distributions, however the same behaviour is found at all steps.)
At the lowest and largest magnetic fields the Coulomb blockade regions have the
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expected diamond shape. The diamond at B = 7.48 T is about 10% smaller
in the Vgp direction, indicating that the necessary energy to overcome Coulomb
blockade has decreased by ~ 10%. This is again consistent with a ~ 10% larger
dot after the charge redistribution. The shapes of the diamonds measured for B
values during the step are severely distorted. The size of the Coulomb blockade
region collapses here to as little as ~ 40 % of its value outside the step region.
This is comparable to the peak broadening by about a factor of 2 during the steps
in Fig. 4.2c where the charge distribution changed from MDD to LDD.

The distorted and collapsing Coulomb blockade regions can be explained by
assuming different charge distributions [16]. In the standard model for Coulomb
blockade the total energy UMPP(V,) belonging to the charge configuration of
the MDD is described by a set of parabolas (solid parabolas in Fig. 4.4a). A
transition from N to N +1 is possible above a threshold voltage Vgp that depends
linearly on V, (solid lines and hatched regions in Fig. 4.4b). At crossings between
adjacent parabolas this threshold voltage vanishes. The value of V, where the
crossing between the N** and (N + 1) parabolas occurs depends on the ’offset
charge’ of the MDD state. The total energy UXPP(V,) for the LDD configuration
is also described by parabolas (dashed parabolas in Fig. 4.4a). However, since
the LDD state has a different charge distribution, its offset charge can differ
significantly from the MDD state. When B is changed the two sets of parabolas
can become comparable in energy (Fig. 4.4c), such that at a particular V-
valuc (open dots) the ground state of the N-electron system changes from MDD
to LDD. This and the fact that transitions can occur between different charge
distributions by tunneling, e.g. from UEPP to UYHP leads to more complex
shapes of the Coulomb blockade regions (see Fig. 4.4c and d). To make a detailed
comparison with this model we have replotted one dataset from Fig. 4 in Fig.
4.4f) together with a schematic representation of its main features (Fig. 4.4e)
. Three types of transitions can be distinguished Fig. 4.4e), which correspond
to transitions between two solid parabolas (from UMPP to UMEP), between two
dashed parabolas (from U%PP to UEPP), or between a dashed and a solid parabola
(from UFPP to UYMEP). The first two types of transitions have the same slopes
as the regular diamonds at the lowest and highest B-fields in Fig. 4 and arc
marked by solid and dashed lines in Fig. 4.4e). The latter transition (marked
by thin lines in Fig. 4.4e) has a slope that is much smaller because the centers
of the parabolas are much closer together. Note that when such a transition is
made (i.e. during the step in Fig. 4.2b and 4.2¢) the current is 2 to 3 times
smaller than when a transition is made between two states with the same charge
distribution, which implies that a transition between e.g. the MDD and the LDD
has a smaller probability than a transition between two MDD states. A detailed
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Figure 4.4: a) Total energy U(V,) for two different charge distributions (solid
and dashed curves, respectively). The three parabolas correspond to N — 1, N,
and N + 1 electrons. Current flows when transitions can occur between parabolas
of consecutive electron numbers. At low Vsp such transitions occur at the solid
dots. In between two solid dots, the minimum Vsp for current is proportional to
the difference in energy between the two parabolas (grey regions). (b) Transition
diagram in terms of Vy and Vsp (i.e. half Coulomb diamonds) corresponding to
situation in (a). (c) same as in (a) but at larger B. Now the dashed parabolas
are comparable in energy to the solid parabolas which gives a transition of the
N-electron system from MDD to LDD as V, is varied (open dots). This leads to
a different shape of the Coulomb blockade region shown in (d). The transition
diagram in (e) shows transitions between two solid (dashed) parabolas as solid
(dashed) lines, and those between a solid and a dashed parabolas as thin lines. In
Fig. 4.3 the solid (dashed) lines become clearer as B is decreased (increased) and
finally become the boundaries of the ordinary diamond-shaped Coulomb blockade
regions at 7.33 T (7.48 T). f) dI /dVsp-data around N = 31 taken from Fig. 4.3
at 7.38 T. The edge of the Coulomb blockade regions have been emphasized with
a white line.
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comparison of the data in Fig. 4 with this model shows that the development of
the Coulomb blockade regions as well as the excited state resonances observed in
Fig. 4 is consistent with a gradual change in the relative displacement of the two
sets of parabolas. From this we again conclude that the instability of the MDD
is accompanied with a redistribution of charge.

We thank G. Bauer, S. Cronenwett, M. Danoesastro, M. Devoret, L. Glazman,
R. van der Hage, J. Mooij, Yu. Nazarov, and S.J. Tans for experimental help and
discussions. The work was supported by the Dutch Foundation for Fundamental
Research on Matter (FOM).
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Chapter 5

Spectroscopy in lateral quantum dots

T.H. Oosterkamp, M. Uilenreef, Yu.V. Nazarov, S.F. Godijn,
N.C. van der Vaart and L.P. Kouwenhoven.

Abstract:

In this chapter we study the magnetic field evolution of the energy states in lateral
rather than in vertical quantum dots. To quantify the evolution of the energy
states we look at their magnetization, i.e. the derivative of the energy of a state
with respect to the magnetic field. To obtain sharper resonances of the states
and thereby a better cnergy resolution we have measured two quantum dots in
series.

From such accurate measurements of the energy states in a double quantum
dot we deduce the change in magnetization of the two dots due to the tunneling
of a single electron. As a function of magnetic field we observe crossings and anti-
crossings in the energy spectrum. The change in magnetization exhibits wiggles
as a function of magnetic field with maximum values of a few effective Bohr
magnetons in GaAs. These wiggles are a measure of the chaotic motion of the
discrete energy states versus magnetic field. Our results show good agreement
with a numeric calculation but deviate significantly from semiclassical estimates.
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Orbital magnetization of small electron systems has become an important
issue in the field of mesoscopics, for instance in relation to the issue of persistent
currents in rings [1]. Altshuler et al. [2] have pointed out that a non-zero orbital
magnetization can be present in any mesoscopic electron system, regardless the
precise geometry. The point of interest is that the magnetization measures the
cumulative motion of the occupied quantum states as a function of magnetic field.
Generally, this motion is chaotic, except for very specific conditions of separable
geometries [5]. The statistical properties of the chaotic motion are supposed to be
unjversal in the sense that they do not depend on the details of the microscopic
structure. Direct measurements of the magnetization of a mesoscopic object is
a challenging task, since it requires the detection of tiny magnetic moments [3].
Here, we report on an experimental study of the magnetization of a quantum
dot, by accurately measuring of its energy states. We show that semi-classical
estimates can not explain our results.

We measure the energy evolution versus B of energy states near the Fermi
energy Er. The resolution is high enough that, for the first time, avoided cross-
ings in the spectrum of a quantum dot can be resolved. We then obtain the
magnetization by taking the derivative of energy with respect to B. Although
this magnetization only includes contributions from states near E, this part
largely determines the total magnetization [1]. Measurements of single-particle
states versus B have previously been reported on single quantum dot devices
[9, 10, 4], but have not been analyzed in terms of their magnetization. In this
paper we address a double quantum dot system which allows for a much better
energy resolution compared to single dots. From the energy dependence on B
we calculate the magnetization. The advantage of our method is that the back-
ground magnetization of the whole heterostructure [12] is not measured so that
we can concentrate on our mesoscopic system. As we explain below, we actually
measure changes in the magnetization, AM. We find that AM induced by one
electron tunneling between the two dots is of order one effective Bohr magneton,
PGads = €h/2Mmgaas ~ 0.87 meV/T, which we determine with an accuracy of
0.1 ptgeas. The magnitude of AM and the typical period of wiggles in AM as a
function of B are in good agreement with numerical calculations but, importantly,
our results deviate from semiclassical estimates.

Figure 5.1a shows our double dot device. The metallic gates (1, 2, 3, and F)
are fabricated on top of a GaAs/AlGaAs heterostructure with a 2DEG 100 nm
below the surface. The 2DEG has a mobility of 2.3 x 10% cm?/Vs and an electron
density of 1.9 x 10" m=2 at 4.2 K. From the density and the effective mass
MGaps = 0.067me, follow the Fermi energy Er = 6.9 meV and the Fermi wave
vector kp = 1.1-10° m~%. Applying negative voltages to all the gates depletes
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Figure 5.1: a) Geometrical layout of a double quantum dot: The gates are labeled
F, 1, 2, and 3. Areas that form dots and bulk 2DEG are indicated by source,
1, r, and drain. b) The energy diagram, uses black circles to indicate that a
certain one-electron level is filled. Energy states at matching levels indicate that
the electron can be transferred between the dots, which gives a peak in the current.
Arrows illustrate the subsequent electron transfer through the system. ¢) Results of
a typical measurement. We measure the current through the double dot sweeping
the gate voltage at different magnetic fields. The curves are offset for clarity.
From the leftmost to the rightmost curve, the magnetic field increases from 300
mT to 600 mT in 3 mT increments. d) The first two diagrams show how levels
may evolve in each of the two dots as a function of magnetic field. When these
four levels are scanned along each other by sweeping the gate voltage this will
result in peak positions as sketched in the rightmost diagram.
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the electron gas underneath them and forms two weakly coupled quantum dots
with an estimated size of 170 nm by 170 nm for the left dot and 130 nm by 130
nm for the right dot (lithographic sizes are (320 nm)? and (280 nm)?). These
dots contain about 60 and 35 electrons, respectively. The sample is cooled in a
dilution refrigerator to 10 mK. Noise enhances the effective electron temperature
in the 2D source and drain contacts to ~80 mK. We measure the current in
response to a dc voltage Viq applied between the source and drain contacts. The
tunnel coupling between the dots and to the reservoirs can be controlled with the
voltages on gates 1, 2 and 3. The experiments are performed in the weak coupling
limit, meaning that mixing between quantum states in one dot with states in the
other dot or in the leads is negligible.

In the weak coupling limit transport is governed by the physics of Coulomb
blockade. We label the number of electrons in the left and right dot by (N;,N;).
Tunneling between two dots occurs when certain conditions for the Coulomb
energies are fulfilled and when simultaneously a quantum state in the left dot
aligns with a state in the right dot [4]. We first discuss the conditions for the
Coulomb energy. A transition from the left to the right dot can occur when the
Coulomb energy of having (N;+1,N,.) exceeds the energy of (N;,N,+1). To avoid
transport through other charge states than N;, N;+1, N, and N,+1, we choose
a source-drain voltage which is just smaller than the smallest of the charging
energies of the individual dots. The measured charging energies are E¢jeps = 1.2
meV for the left dot and Ecrign: = 1.8 meV for the right dot. We sweep the
gate voltages over small ranges and focus on a particular charging transition; i.e.
transitions between (N;+1,N,) and (N;,N,.+1) only. Since we discuss only one
transition at a time, we can, for simplicity, leave out the Coulomb energies from
the discussion and concentrate on the alignment of quantum states.

Figure 5.1b illustrates the case where a quantum state of the left dot is aligned
with a quantum state in the right dot; this is a case where current can flow. In
contrast to resonant tunneling in a single dot, where the peak width is determined
by the thermal broadening in the leads, the width of the current resonance in
the double dot is determined only by the alignment of the quantum states. The
measured resonance can be an order of magnitude narrower than the thermal
energy kgT of the reservoirs [11]. We use this advantage of high energy resolution
in a double dot system to obtain the magnetization with very high precision.

The quantum states (dotted and solid lines in Fig. 5.1b) we deal with are real
many-body states of the dot systems. General labels for these states are ERM for
the left dot and EF™ for the right dot, which we simplify to E! and ET. When
sweeping gate 3 the condition for tunneling between the lowest possible states,
i.e. from ground state to ground state, is B} = Ej — aVj3, where a describes the
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influence of gate 3 on the right level. The situation of Fig. 5.1b corresponds to
tunneling from the first excited state to ground state, i.e. B} = Ej — aV,. The
states B and E7, i =0, 1,2, - - are separated by ~ 150-200 ueV.

Figure 5.1c shows a typical set of current traces for different magnetic fields
while sweeping the voltage on gate 3. The bias voltage Vsp = 1.2 mV such
that several energy states in each dot are between the Fermi energies of the two
leads. The change in peak positions versus B is proportional to the motion of the
alignment §[E} — E7] = — a6VPe**. (Note that if the states E! and ET have the
same B-dependence, the peak would not change its position.) We determined
the factor a = 63 ueV/mV, through independent measurements from which we
deduced the energy scale for Fig. 5.1c that is indicated by the arrow in the lower
left inset (o does not change in this magnetic field range). The energy resolution
of [E} — ET] is ~b peV.

The data in Fig. 5.1c contains several intercsting features. First, we observe
crossings between different peaks as well as anti-crossings (two are indicated by
arrows). Second, pairs of peaks exhibit the same B-dependence. These are
general features that we observe at many charge transitions (N;,N,). We do not
know of similar observations in other quantum dot experiments. Independent
measurements on one of the individual dots also showed states evolving in pairs
below B ~ 0.5 T. The observed pairing and (anti)crossing of the peaks in the
double dot experiments can then be explained as shown schematically in Fig.
5.1d. Suppose two energy states in one dot have an anti-crossing in their B-
dependence. Then two paired energy states in the other dot, having the same
B-dependence, will both probe this anti-crossing. At the points where two peaks
actually cross two states in the left dot align with two states in the right dot
simultaneously (though only one electron can tunnel at a time due to Coulomb
blockade). These considerations explain our observations. The energy difference
between paired states can be an exchange energy; e.g. when the higher energy
state has spin zero and the lower state has spin one. In our experiments we find
energy separations between paired states of typically 100 eV being constant
within 20 ueV over a field range of 0.5 T. Whether an exchange energy is giving
rise to the energy separation is yet unclear. Howcver, there have been other
indications that exchange-correlation plays an important role in quantum dots
10, 13].

In Fig. 5.2a measurements of the current as the magnetic field is increased up
to 750 mT are shown in a grayscale representation for different electron numbers
(Ni,N,.). The peak heights tend to vanish with higher magnetic fields, which limits
the magnetic field range of our experiments. In Fig. 5.2b the peak positions are
extracted and the gate voltage axis is converted to energy. Note that this data
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Figure 5.2: a) Grayscale representation of the current as a function of magnetic
field. White is 0 fA, black is > 150 fA. Peaks larger than 150 fA appear broader
in the grey scale plot because they are truncated. b) Peakpositions converted to
energy. c) Magnetization change AM in units of pgeas as calculated from the
numbered curves in b) . Solid and dotted lines in one graph are taken from pairs:
(2,3), (6,7) and (4,5).
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also shows crossings and anti-crossings. We obtain the change in magnetization,
AM = My N, 5t — My, N, by numerical differentiation:
1 T peak
S|E: — E5] 6V}

AM:'—T:—Q 5B . (51)

Figure 5.2c shows examples of AM in units of pgeas versus B, for several
alignments of different discrete energy states. AM shows wiggles with an ampli-
tude of the order of pgeas and a typical period of 0.3 T to 0.4 T. Note that a
magnetic field By between 0.1 and 0.2 T corresponds to one flux quantum pene-
trating the area of a single dot. Measurements such as those in Figures 5.1 and
5.2 were performed in three separate cooldowns and also for different electron
numbers in the two dots. The magnetization at zero magnetic field is always zero
due to symmetry F;(B) = E;(—B). At finite magnetic fields, the sign of AM
can be positive as well as negative.

We can estimate the magnitude and the period of magnetization oscillations
from semi-classical theory. The amplitude AM is roughly the magnetic moment
of one electron moving through a dot of size a with momentum pg, M. = I+ S ~
UGaasPra/2h, where I, is the current due to one electron encircling an area S in
the dot. In our case, pra/2h ~ 9, and thus AM ~ 9 ug.a,, which is several times
larger than what we observe. The characteristic period of the wiggles AB can be
cstimated by equating magnetic energy AMAB with the mean spacing between
particle-in-a-box states, AFE = 7T2h2/2mGa/,sa2. This yiclds AB ~ Bynh/pra =~
0.02 T, which is an order of magnitude smaller than seen in our experiment.

To comprehend this discrepancy we have performed numerical simulations.
The results are plotted as solid lines in Fig. 5.3 for three different pairs of levels.
We regard the dots as squares with sides of 170 and 130 nm. To lift degeneracies
characteristic for the square geometry and to account for probable disorder, we
add a custom random potential to the dot potential. The random potential
is formed by several rectangular wells of random size and position and with a
typical depth of ~ 0.1 Er. Solving the Schrédinger equation we have calculated
the energy levels in both dots versus B. From the difference of the magnetization
of states close to the Fermi level in each of the two dots we obtain AM. We have
checked that the wiggles of the magnetization change are random depending on
the realization of the potential. They do retain the same order of magnitude and
the same typical period. To illustrate that the numerical results show a better
agrecment with the experimental data than the semiclassical estimate as far as
the amplitudc and the wiggle period is concerned, we have plotted magnetization
measurements from Fig. 5.1 (squares and diamonds) and yet another data set
(circles) that happen to fit the calculations reasonably well, even though, due to
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Figure 5.3: Magnetization change calculated numerically for two dots of the same
sizes as in the experiment (solid lines) and experimental curves extracted from
Fig. 5.1 (squares and triangles) and another dataset (circles).

the random nature of the disorder, an exact fit is not expected.

For larger electron numbers (N > 200) our simulations begin to show agree-
ment with the semi-classical estimates. This drives us to the conclusion that
quantum dots with N < 100 are too small to be satisfactorily described by semi-
classical theory.

In conclusion, we used a new method to explore magnetic properties of an
ultra small system by means of an accurate transport measurement. The high
resolution in energy made it possible to observe clear avoided crossings of states.
For the magnetization an accuracy of ~0.1 pgeas Was achieved. Magnetization
traces manifest the chaotic motion of energy levels in magnetic field. The system
appears to be too small for this motion to be described by semi-classical theory.
There is, however, good agreement with the results of numerical simulations that
incorporate the microscopic description of the dot.
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tures and S. Cronenwett, C. Harmans, J. E. Mooij, C. W. J. Beenakker, M.
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Chapter 6

Photon assisted tunneling in a single
quantum dot

T.H. Oosterkamp, L.P. Kouwenhoven, A.E.A. Koolen,
N.C. van der Vaart and C.J.P.M. Harmans.

Abstract:

We have measured photon-assisted tunneling through a quantum dot with zero
dimensional (0D) states. For photon energies smaller than the separation between
0D-states we observe photon sideband resonances of the ground state. When
the photon energy exceeds the separation between 0D-states, we observe photon
induced excited state resonances. We identify the different resonances by studying
their dependence on photon frequency, magnetic field and microwave power.
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6.1 Introduction

In analogy to spectroscopy on atoms it is interesting to study the interaction be-
tween light and electrons confined in quantum dots. However, since it is difficult
to realize identical quantum dots the response of an ensemble of quantum dots
to light excitation is strongly averaged over sample differences. Despite this aver-
aging, excitation studies on quantum dot arrays by far-infrared light have shown
the spectrum of collective modes [1] and inelastic light scattering experiments
have probed single particle excitations [2]. The latter technique has also probed
excitons in a single quantum dot [3]. We have used microwaves with relatively
low frequency (up to 75 GHz) to study the discrete electron excitation spectrum
in the conduction band of a single quantum dot. In contrast to the light trans-
mission or luminescence measurements of the above spectroscopy techniques, we
measure the photoresponse in the dc current.

Current can flow through a quantum dot when a discrete energy state is
aligned to the Fermi energies of the leads. This current is carried by resonant
elastic tunneling of electrons between the leads and the dot. An additional time-
varying potential Vcos(27r ft) can induce inelastic tunnel events when electrons
exchange photons of energy hf with the oscillating field. This inelastic tunnel-
ing with discrete energy exchange is known as photon-assisted tunneling (PAT).
PAT has been studied before in superconductor-insulator-superconductor tunnel
junctions [4], in superlattices [6], and in quantum dots {7, 9]. The quantum dots
in Ref. 7 were rather large and effectively had a continuous density of states. So
far, PAT through small quantum dots with discrete states has only been studied
theoretically [10, 11]. In this paper we show for the first time different types
of PAT processes through a quantum dot with well resolved discrete 0D-states.
We first show that an elastic resonant tunneling peak in the current develops
photon sideband resonances when we apply microwaves. We then use PAT as a
spectroscopic tool to measure the energy evolution of the first excited state as a
function of magnetic field [12].

6.2 PAT through a single junction

Our first step is to look at photon-assisted transport through a single tunnel
junction. Suppose that we have an oscillating potential difference across a tunnel
junction V cos(27ft): in which V is the ac amplitude and f is the frequency.
This gives a Hamiltonian H = Hy + Hype = Ho + eV cos(2nm ft). Hg is the
unperturbed Hamiltonian describing the two leads on either side of the tunnel
junction. The effect of the oscillating potential is that the time dependent part
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of the electron wave function, when expanded into a power series, contains the
energy components £, E+ hf, E£2hf, ..., etc. where hf is the photon energy.
These energy components are called sidebands. The expansion can be done as

[4]:

P(r,t) = (r)exp (—i/dt[E+e‘~/ cos(27rft)]/h>

= (r)exp (—iEt/h) i Jo(eV /hf) exp(—in2m ft)

n=-—oo0

= W)( i Jn(eV/hf)exp(—i[E+nhf]t/h)> (6.1)

n——oc

(r) is the space dependent part of the wave function v¥(r,t). J,(a) is the nth
order Bessel function of the first kind evaluated at o: = eV /hf. The sidebands are
only well-defined if the number of tunnel events per unit of time (i.e. the tunnel
rates) are much smaller than the photon-frequency. Because there is no electric
field in the scattering-free leads, mixing of electron states in the leads is absent
[5]. The probability for tunneling from an occupied state E to an unoccupied
state E + nhf is given by P(E — E +nhf) = J2(a). A positive (negative) n
corresponds to the absorption (emission) of n photons during the tunnel process.
Elastic tunneling without photons corresponds to n = 0.

A net current flows by introducing an asymmetry, for instance, by applying
a dc source-drain voltage Vsp between the two leads. If tunneling is a weak
perturbation, the current in the presence of microwaves I is given by [4]:

TVsp) = ¢ 3 J2(eV/hf)

n=—0oo

x [ dBIA(E - eVsp) — £o(B + nhf)la(E — eVp)pr(E + nhf)

= i JHeV/hf) I(Vsp + nhf[e) (6.2)

n=—0oo

f(FE) is the Fermi function, p; and p, are the unperturbed densities of states
of the two leads, c is a constant which is proportional to the tunnel conductance,
and [ is the tunnel current without an oscillating field. For a single junction the
dc current in the presence of microwaves is thus simply described in terms of the
dc current without microwaves. Note that for a double junction equation 6.2 is
not valid, as will be shown in the following.
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6.3 The 0D-model based on a master equation

Transport through a quantum dot is dominated by Coulomb blockade effects
[13]. The energy to add an extra electron to a quantum dot consists of a charging
energy F, for a single electron, and a finite energy difference Ae arising from the
confinement. A dot is said to have 0D-states if Ae is larger than the thermal
energy kgT [13]. Assuming sequential tunneling of single electrons, the current
can be calculated with a master equation [14, 15].

Our model is based on such a master equation approach with the inclusion
of PAT. We assume E. > Ae, kgT, hf such that we can use a two-state (N
and N + 1) model [16]. We neglect level broadening due to a finite lifetime of
the electrons on the dot. A quantum dot state can be described by the total
number of electrons on the dot (which is either N or N + 1) together with x
which describes the particular distribution of electrons over the 0D-states. The
net current through the dot I follows from the probability Py, that a particular
distribution is occupied together with the tunnel rates through one of the barriers:

I=% 3 Puxl5=3 3 PvuyIly (6.3)

X j=empty x' j=full

Here F;Z(out) are the rates into (or out of) OD-state j, through the left bar-
rier:

n(e;) = iy, Ji(cw)filej — nhf + eVsp)

FZ?t(ej) = I Z Jﬁ(al)[l — file; — nhf +eVsp)) (6.4a)

where I'; is the tunnel rate of the left barrier determined by the barrier shape
that we assume to be energy independent, and ¢; is the energy of 0D-state j
measured relative to the Fermi energy of the right lead. An equivalent set of
equations can be given for the right barrier taking Vsp = 0. In the following sim-
ulations we take equal ac amplitudes dropping across the left and right barriers;
i.e. & = o = «. The probabilities Py, are calculated from the set of master
equations given by:

» — out out
PN:X - Z PN+11X’ (Fl,jxl + Fr,jxl)
’
X

—Pry > (T +I75) (6.5)

j=empty

+ Z PN’X//FXII_,X _PN,X Z FX_,X/H
x"#Ex X" #x
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and its equivalent for Py, . Note that for N = 2 we have ten different x if
we include five different OD-states, so we have ten equations Py, and another
ten equations Py41,. The first two terms in equation (6.5) correspond to a
change in the occupation probability of a certain distribution due to tunneling
(the number of electrons on the dots changes). In the first term only the rates
are taken into account that correspond to an electron tunneling out of state 7,
leaving the dot in the distribution (N, x). For an electron tunneling out of the
dot one needs to sum over all the states j that are filled when the dot is in state
x (second term). In the last two terms the number of electrons on the dot stays
the same, only the distribution over the states changes (i.e. electrons relax to a
lower level or they are excited to a higher level. We take excitation rates equal
to zcro (no mixing of electron states in the dot due to the high frequency) and
non-zero relaxation rates.

To find a stationary solution for the occupation probabilities in the dot these
equations are set to zero and solved with the boundary condition:

Y Pryx+ D Priiy =1 (6.6)
X x

The current is calculated for a fixed set of 0D-energies {£;}. The effect of a gate
voltage is simulated by shifting the 0D-energies relative to the Fermi energy of
the right reservoir.

Figure 6.1 shows simulations without relaxation between the states in the dot.
We have taken Ae = 3hf for the curves in the inset. Next to the main resonance
we see that side-peaks develop at multiple values of hf/e when « is increased. In
the main figure we have taken Ae = 0.75h f. Here not only side-peaks develop but
we also see peaks at other gate voltages. These peaks arise due to the interplay
between the 0D-states and the photon energy. Their locations are described by
(mAe + nhf)/e where m = 0, £1, +2, ... and n is the photon number. Similar
simulation results have been reported by Bruder and Schoeller [11].

Figure 6.2 shows an expansion for the curve with o = 1. We have assigned
the excited states and the particular PAT process. The N + 1 ground state is
denoted by j = 0, positive j’s are excited states above g and negative j's are
below &g.

The inset shows the effects of relaxation. It is seen that upon increasing the
relaxation rate the peaks that correspond to transitions through excited states
decrease, while the peaks corresponding to transitions through the ground state
increase.

The diagrams in Fig. 6.3 show two relevant energy states for IV electrons in
the dot. For small dc bias voltage and no ac voltages a current resonance occurs
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Figure 6.1: Simulation without relazation. The parameters for the data in the
inset are Ae = 3hf, hf = 5kgT, and from top to bottom a =0, 1, 1.5, 2. The
parameters for the main figure are Ae = 0.75hf, hf = 20kgT and from top to
bottom oo =0, 0.5, 0.75, 1, 1.5.

when the topmost energy state (i.e. the electrochemical potential) of the quantum
dot lines up with the Fermi levels of the leads (see the diagram 7). When high
frequency voltages drop across the two barriers, additional current peaks appear.
We distinguish two mechanisms which were calculated in Ref. 11. The first
mechanism gives photon induced current peaks when the separation between the
ground state ¢ and the Fermi levels of the leads matches the photon energy (or
nhf), as depicted in the diagrams labeled by o + hf and &g — Af. The minus
and plus signs correspond to being before or beyond the main resonance. Note
that also the case of g — hf involves photon absorption. Following the literature
on the tunneling time we call these current peaks: sidebands [18]. The second
mechanism leads to photon peaks when an excited state is in resonance with the
Fermi levels of the leads (see diagram ¢;). Without PAT, transport through the
excited state €, is blocked since Coulomb blockade prevents having electrons in
both the ground state and the excited state simultaneously. The electron in the
ground state cannot escape from the dot because its energy is lower than the
Fermi levels in the leads. PAT, however, empties the ground state €5 when the
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Figure 6.2: Expansion for the curve o = 1 from figure 6.1. The inset shows the
effects of increasing relazation. The relazation rates divided by the tunnel rate
are 0, 0.1, 0.35, 1, 8.5, and infinite.

electron in gg absorbs enough energy and leaves the dot. This process is analogous
to photo ionization. Now, the N*! electron can tunnel resonantly via the excited
state €; as long as the state £y stays empty. Note that for this second mechanism
nhf has to exceed, but not necessarily match the energy splitting Ae = ¢, — €.
More photon peaks are generated when these two mechanisms are combined as
in the diagrams labeled by £, + hAf and &; — hf. We thus see that PAT can
populate the excited states with the help of tunneling between dot and leads. So,
even without direct intra-dot transitions we can perform photon spectroscopy on
discrete quantum dot states.

6.4 Pumped current

It is important to note that in the diagrams of Fig. 6.3 only processes with
tunneling from or to states close to the Fermi levels in the leads contribute to
the net current. Tunnel processes that start with an electron from further below
the Fermi level in one of the leads are cancelled by an electron from the other
lead. This is only true when the ac voltage drop is the same for each barrier.
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Figure 6.3: Diagrams depicting the sequence of tunneling events which dominantly
contribute to the current through a quantum dot, for different gate voltages. A
small dc bias raises the left Fermi level with respect to the right Fermi level. &
and 1 denote the ground state and the first excited state of the N electron system.
When the Nt electron tunnels to one of the two reservoirs, the energy states of
the dot drop by the charging energy E.. The corresponding diagrams for N — 1
electrons are not shown. Note that only processes with tunneling from or to states
close to the Fermi levels in the leads contribute to the net current.

When the ac voltage drops across the two barriers are unequal the dot acts as an
electron pump|7, 11]. The resulting pumped current makes the current resonances
discussed above less clear. For this reason we discuss this pumping mechanism
in more detail here before proceeding further. Fig. 6.4 shows a calculation of the
pumped current as a function of the gate voltage that occurs when the ac voltage
drop over one barrier is 5% smaller than over the other barrier. We have taken
zero dc bias voltage. To illustrate the origin of the pumped current the insets
show the extreme case, when all the ac voltage drop is across the left barrier.
In this case photon absorption occurs only at the left barrier. At negative gate
voltage when the ground state level of the dot is above the Fermi level of the
leads an clectron can enter the dot from the left lead only (bottom left inset of
Fig. 6.4). Once the electron is in the dot it can tunnel out through both of the
tunnelbarriers. Only the electron tunneling out to the right lead contributes to
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Figure 6.4: Calculation of the current as a function of gate voltage in the case
where the ac voltage drop over one barrier is 5% smaller than over the other
barrier. V =0, kgT = 0.05hf, T = 5-108 s71. The insets depict which sequence
of tunneling events is responsible for the pumped current when the ground state
of the quantum dot is below or above the Fermi levels of the leads.

the net current. Therefore the net current is to the right. When the ground state
level of the dot is below the Fermi level of the leads, however, an electron can
only leave the dot to the left lead (upper right inset of Fig. 6.4). The dot can be
filled from either lead once it is emptied. This time only the electron tunneling
wn from the right lead contributes to the net current. Therefore there is a net
current to the left. The difference between these two situations is the shift in the
ground state energy with respect to the Fermi levels of the leads. So, when the
gate voltage is swept such that the ground state moves through the Fermi levels
of the leads, the pumped current changes sign. The pumped current occurs over
a width which scales with the photon energy. The extra shoulders at the far left
and far right of the figure are due to two-photon processes.

6.5 Experiments

Our measurements are performed on a quantum dot defined by metallic gates
(see Fig. 6.5) in a GaAs/AlGaAs heterostructure containing a 2 dimensional
clectron gas (2DEG) 100 nm below the surface. The 2DEG has mobility 2.3-10°
cm?/Vs and electron density 1.9-10' m~2 at 4.2 K. By applying negative voltages
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‘-l microwave

Figure 6.5: SEM photo of the sample. The lithographic size of the dot is (600 x
300) nm?. Current can flow when we apply a voltage between source and drain.
The microwave signal is coupled to one of the center gates.

to the two outer pairs of gates, we form two quantum point contacts (QPCs).
An additional pair of center gates between the QPCs confines the electron gas
to a small dot. No electron transport is possible through the narrow channels
between the center gates and the gates forming the QPCs. The center gate
voltage V; can shift the states in the dot with respect to the Fermi levels of the
leads and thereby controls the number of electrons in the dot. The energy shift
is given by AE = k- AV,. A small dc voltage bias is applied between source and
drain and the resulting dc source-drain current is measured. From standard dc
measurements we find that the effective electron temperature is approximately
T = 200 mK and the charging energy E, = 1.2+0.1 meV. We independently
determine the level splitting Ae for different magnetic fields from current-voltage
characteristics. In addition to the dc gate voltages we couple a microwave signal
(10-75 GHz) capacitatively into one of the center gates. The microwave will not
couple in the same way to the dot as to the leads, which results in an ac voltage
drop over both barriers.

6.5.1 pumping

In the following we first present some experimental results with a strongly
pumped current. Then we discuss the measurements on the photon resonances.
Fig. 6.6 shows measurements of the current at B = 1.96 T for three frequencies




6.5. Experiments 79

microwave power off

Current (pA)
o

-550
Gate Voltage (mV)

Figure 6.6: Measurements of the pumped current at B = 1.96 T, Vgp = 13
uV, and for frequencies around 47.4 GHz. Dashed line is without microwaves.
The dotted line shows the smallest asymmetry, but shows evidence for a pumping
mechanism which is not included in our model.

around 47.4 GHz (the arrow denotes hf). The dashed line is the current without
microwaves. All curves are taken with a bias voltage of Vsp = 13 pV. It can be
seen that for the lowest frequency the current is pumped in one direction whereas
for the highest frequency it is pumped in the opposite direction, meaning that
while at 47.33 GHz the left barrier has the smaller ac voltage drop, at 47.43 GHz
the left barrier has the larger ac voltage drop. This illustrates how sensitively the
asymmetry of the voltage drops over the two barriers depends on the frequency.
This sensitivity is ascribed to the standing waves in the sample holder. The dotted
line shows the current measured at an intermediate frequency, where we expect
the ac voltage drop to be equal over both barriers. In contrast to the two solid
curves, the dotted line is lower than the dashed line without microwaves over the
whole gate voltage range. This cannot be explained by the pumping mechanism
in our model. Our model only includes the oscillation of the potential of the
leads and the dots which always results in a pumped current which changes sign
at the resonance. This pumped current which is negative over the whole gate
voltage range is attributed to the effect of the microwaves on the barrier height.
The inset shows how a quantum dot can act as a pump when one tunnelbarrier
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Figure 6.7: Measurement of the current through the quantum dot as a function
of the center gate voltage and the output voltage of the microwave supply. These
data are taken in the single level regime (hf < Ae). hf = 110 peV for f = 27
GHz, Ae = 165 peV at B = 0.84 T, and Vgp = 13 pV. Note that the gate
voltage azis runs from positive to negative. Inset: calculation of the current as a
function of the gate voltage and the ac voltage parameter o = el7/h f, taking the
same values for T, f, and V as in the experiment.

is periodically modulated in height. During one part of the cycle when the left
barrier is low electrons enter the dot (T%* > T'p) while they escape the dot
through the right barrier in the second half of the cycle when the left barrier is
high (F'”qh < T'g). This essentially is a classical mechanism that has been verified
experimentally in the MHz regime [8].

For observing photon resonances we choose frequencies that do not lead to a
dc current in the absence of a dc bias voltage, in order to minimize both types of
pumping. It is then easier to distinguish the photon resonances. We concentrate
on a single Coulomb peak and study the modification of the shape of the peak
induced by the microwave signal [?].
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6.5.2 low frequency regime hf < Ac¢

First, we study the photon sidebands of the ground state at a magnetic field
B = 0.84 T {19]. The main part of Fig. 6.7 shows measured curves of the
current as a function of the gate voltage at different microwave powers for the
casc hf < Ae (hf = 110 peV for f = 27 GHz and Ae = 165 peV). Here
current flows primarily via the ground state and its photon sidebands (i.e. upper
diagrams in Fig. 6.3). On increasing the microwave power we see in Fig. 6.7 that
the height of the main resonance decreases to zero while additional resonances
develop with increasing amplitude. When we convert gate voltage to energy we
find that the additional resonances are located at eg & hf and €¢ +2hf [20]. The
power dependence is in agreement with the behaviour of the Bessel functions:
J3() for the main resonance &, Ji(c) for the one-photon sidebands &g + hf,
and J2(a) for the two-photon sidebands e¢ + 2hf. For comparison we show a
calculation in the inset of Fig. 6.7 for the same values for the temperature,
frequency and bias voltage as in the experiment. We have assumed equal ac
voltages across the two barriers. The small difference between measured and
calculated data is attributed to an asymmetry in the ac coupling.

6.5.3 high frequency regime hf > Ac¢

We now discuss the higher frequency regime where hf > Ae such that PAT
can induce current through excited states. Fig. 6.8 shows measurements of the
current at B = 0.91 T (here Ae = 130 peV). In the top section f = 61.5 GHz
and in the bottom section f = 42 GHz. As we increase the power we see extra
peaks coming up. We label the peaks as in Fig. 6.3. On the right side of the main
resonance a new resonance appears, which we assign to photo ionization followed
by tunneling through the first excited state. At higher powers the one-photon
sidebands of the main resonance as well as those of the excited state resonance
appear. We do not observe the peak for eg+Af, in this measurement. This can be
explained, at least in part, by the fact that here an electron can also tunnel into
€1 which blocks the photon current through ¢ + hAf. Simulations confirm that
the peak for g + hf can be several times weaker than the peak for g9 ~ hf {17].
Also it is masked by the high peak for ¢; right next to it. The arrows underneath
the curves mark the photon energy given by the corresponding frequency. The
peaks gp and €; remain in place when we change the frequency, since the photon
energy evidently does not alter the energy splitting. The other peaks, g9~ hf and
€1 £ hf, shift by an amount that corresponds to the change in photon energy as
indicated by the arrows. This reflects that the sidebands originate from matching
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Figure 6.8: Measured current as a function of center gate voltage for different
microwave powers. The dashed curve is without microwaves. B =091 T, Vsp =
13 pV, in the top section the frequency is f = 61.5 GHz, in the bottom section
f = 42 GHz. As the frequency of the microwaves is reduced between top and
bottom sections, the ground state resonance ey and the resonance attributed to
the excited state €1 remain at the same gate voltage position. The other peaks,
€o— hf and ey & hf, shift inward by an amount which corresponds to the change
in photon energy as indicated by the arrows. We do not observe ey + hf in this
measurement.

the states €9 and €1 to the Fermi levels of the leads by a photon energy hf.
We further substantiate the peak assignment by studying detailed frequency,
magnetic field and power dependence.

6.5.4 frequency dependence

First, we discuss the frequency scaling. Fig. 6.9 shows the spacing between a
resonance and its photon sidebands as a function of the photon energy. Different
markers correspond to different photon peaks. The factor k = 35 peV/mV to
convert the peak spacings in mV gate voltage into energy is independently deter-
mined from dc measurements. The full width at half maximum value (FWHM)
of the resonance without microwaves, indicated by the arrow, is proportional to
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Figure 6.9: Peak spacings versus the photon energy. O: spacing between ey and
o —hf. ©: spacing between gy and 9+ hf. A: spacing between e, and &y — hf.
O: spacing between e, and e1+hf. The dashed line is based on the gate voltage to
energy conversion factor k independently determined from dc measurements, and
has the theoretically expected slope equal to 1. The arrow indicates the FWHM of
the peak.

the effective electron temperature in the leads. Structure due to photon energies
below this value is washed out by the thermal energy kgT'. The frequency scaling
firmly establishes PAT as the transport mechanism [4, 6, 7, 9]. The observation
that the sidebands move linearly with frequency while the ground and excited
state resonances stay fixed supports our identification of the different peaks.

6.5.5 magnetic field dependence

We can now use a magnetic field to change the energy separation between
the ground state and the first excited state [12] while keeping the distance to the
sidebands fixed. Fig. 6.10a shows the positions in gate voltage of all observed
peaks for 52.5 GHz as a function of magnetic field. The filled circles reflect the
evolution of £y with magnetic field. This ground state weakly oscillates with a
periodicity of ~80 mT which roughly corresponds to the addition of an extra
fluxquantum to the dot. The filled diamonds reflect the evolution of €;. The
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Figure 6.10: (a) Peak positions at different magnetic fields at 52.5 GHz. Solid
symbols denote peaks which are independent of frequency. Open symbols denote
peaks that scale with frequency. (b) Peak spacings relative to the main resonance
converted to energy. Closed circles: gg; open circles: €9 = hf; closed diamonds:
€1; open diamonds: €1 — hf and €1 — 2hf.

open circles (diamonds) show the sidebands g + hf (¢; £ hf). Fig. 6.10b shows
the magnetic field evolution of the excited state and the photon sideband peaks
relative to the ground state (i.e. we have subtracted £9(B) from the other curves).
We see that the energy splitting decreases on increasing the magnetic field and
for 0.54 T < B < 0.58 T a degeneracy of the ground state is temporarily lifted
and actually two excited states are observed [21]. The dashed lines denote the
photon energy hf = 217 peV for 52.5 GHz. The open circles close to these lines
are the photon processes ¢ £ hf demonstrating that they indeed move together
with the ground state. The open diamonds are the €, —hf and €; —2h f processes.
Their motion follows the motion of £;. We have thus shown that we can vary the
states €9 and ¢; with the magnetic field and, independently, vary the separation
to the sidebands with the microwave frequency.
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Figure 6.11: (a) calculation of the peakheights as a function of the ac voltage
drop across the barriers o = % T =200 mK, V =13 pV, f = 52.5 GHz.
The tunnelrates from the leads to the groundstate and the excited state are set
to Ty, = 5-10° st and T, = 14 - 10® s7*, respectively. The relazation rate
from the excited state to the ground state is assumed to be zero in the calculation.
(b) experimentally obtained peakheights as a function of the ac voltage amplitude
(measured at the microwave source). V =13 uV, f = 52.5 GHz. The tunnelrates,
obtained from dc current-voltage characteristics, are Ty = 5-10% 57! and T, =
6-10% s

6.5.6 power dependence

Fig. 6.11a shows a calculation of the peak heights as a function of the ac
voltage drop across the barriers o = % These results were obtained using the
master equation approach described in Ref. 17. Temperature, bias voltage, and
frequency are taken from the experiment described below: T = 200 mK, Vsp = 13
1V, and f = 52.5 GHz. The tunnelrates from the leads to the groundstate and
the excited state are set to I';; = 5- 108 s™! and Iy, = 14 - 108 s7!, respectively.
The relaxation rate from the excited state to the ground state is assumed to be
zero in the calculation. The effect of a finite relaxation rate is to reduce the
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height of ¢; with respect to the other peaks since it would make the process ¢;
described above less effective. The calculated peak heights roughly follow the
Bessel functions in Eq. 6.4a. The groundstate resonance g follows JZ(c) since
it involves only elastic tunnelevents (see Fig. 6.3, diagram gp). The photon
sidebands follow JZ(a), since they solely depend on the probability of photon
absorption. For example the process €y — hf is due to a photon assisted tunnel
event which fills the dot. Once the dot is filled, however, it does not matter
whether the dot is emptied via an elastic or an inelastic event. The process &;
follows the product of the first and second order Bessel functions JZ(c)J?(a)
since it requires that the ground state is emptied via a PAT process but also that
the following tunneling processes through the excited state &, are elastic. Fig.
6.11b shows the experimental results for the peak heights at B = 0.91 T and
f = 52.5 GHz as a function of the ac voltage amplitude at the output of the
source. The measurements are in good qualitative agreement below an ac source
voltage of 100 mV. At higher ac voltages the pumped current starts to become
important. The values for the tunnelrates to g and to ¢; derived from the dc
current-voltage characteristic are Ty = 5-108 57! and I';, = 6-108 s7*. The value
for T';, in the calculation is larger than the experimentally determined value but
still the calculated value for the height of the ¢; resonance is smaller than the
experimental value. It is a general trend in most of our data that the peak e is
higher than predicted by our model and that o+ A f is lower than expected from
simulations. At present this is poorly understood [22].

Simulations show that the pumped current is quite independent of the bias
voltage when eVgp <« hf while current due to the photon resonances increases
linearly with the bias voltage when eVgp < kgT. Therefore it is possible to
improve the quality of our data by separating the pumped current from the
photon resonances. This could be done by doing measurements for different bias
voltages at every microwave power. This would allow for better comparison with
calculations over a wider range of microwave powers.

In conclusion, we have used photon-assisted tunneling to study the interaction
between microwave light and electrons occupying discrete 0D-states in a single
quantum dot. The quality of our data shows the feasibility of recently proposed
experiments on Rabi-type oscillations between coupled quantum dots [23].
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supported by the Dutch Foundation for Fundamental Research on Matter (FOM).
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Chapter 7

Microwave spectroscopy of a quantum
dot molecule

T.H. Oosterkamp, T. Fujisawa, W.G. van der Wiel, K. Ishibashi,
R.V. Hijman, S. Tarucha and L.P. Kouwenhoven.

Abstract:

Quantum dots are small conductive regions in a semiconductor, containing a
variable number of electrons (N=1 to 1000) that occupy well defined discrete
quantum states. They are often referred to as artificial atoms [1] with the unique
property that they can be connected to current and voltage contacts. This al-
lows one to use transport measurements to probe the discrete energy spectra. To
continue the analogy with atoms, two quantum dots can be connected to form
an ’artificial molecule’. Depending on the strength of the inter-dot coupling, the
two dots can have an ionic binding [2-6] (i.e. electrons are localized on the indi-
vidual dots) or a covalent binding (i.e. electrons are delocalized over both dots).
The covalent binding leads to a bonding and an anti-bonding state with an en-
crgy splitting proportional to the tunnel coupling. In the dc current response to
microwave excitation [5-8] we observe a transition from an ionic bonding to a co-
valent bonding, when we vary the inter-dot coupling strength. This demonstrates
controllable quantum coherence in single electron devices.
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When particles are allowed to tunnel back and forth between two quantum
systems, the energy states of the individual systems mix and form new states that
extend over both systems. The extended states are referred to as the bonding-
or symmetric state, and the anti-bonding- or anti-symmetric state. In solid state
systems the energy splitting between bonding and anti-bonding states have been
observed in quantum well structures [9,10], superconducting tunneling devices
[11,12], and exciton systems [13].

Quantum dots are uniquely engineered solid state systems in the sense that
they have discrete states and the electrons on the dots are strongly interact-
ing. The question whether different dots can be coupled together in a quantum-
mechanically coherent way is non-trivial. The reason is that quantum dots com-
posing single-electron devices are embedded in an environment with many elec-
tronic degrees of freedom. The electron that occupies the covalent state of a
double dot system, has a Coulomb interaction with all the other electrons con-
fined on the dots and also with the electrons in the current and voltage leads.
These interactions can lead to dephasing of the quantum mechanical wave func-
tion resulting in a breakdown of the covalent state. For realistic devices there is
no theory yet that can calculate reliable dephasing rates.

Nevertheless, if elements like quantum dots will ever be integrated in little
quantum circuits {14-16], it is necessary that dots can be coupled coherently.
This chapter reports on experiments that demonstrate this ability and, in our
opinion, the cleanliness of the results are promising for manipulation of elec-
trons in more complicated circuits. We have used microwave spectroscopy (0-50
GHz) to measure the energy differences between states in the two dots of the
device [2] shown in Fig. 7.1a. We show that these energy differences, including
the bonding-antibonding splitting, is controlled by gate voltages which tune the
tunnel coupling between the dots. We first discuss the weak-coupling regime.

Electrons are strongly localized on the individual dots when tunneling between
the two dots is weak. Electron transport is then governed by single-electron
charging effects [8]. The charging energies can be tuned away by means of the
gate voltages. It is then energetically allowed for an electron to tunnel between
dots when a discrete state in the left dot is aligned with a discrete state in the
right dot. External voltages also control the alignment of the discrete states. A
current can flow when electrons can tunnel, while conserving energy, from the
left lead, through the left and right dots, to the right lead. Note that energy is
also conserved when photons of energy hf are absorbed from the microwave field
which match the energy difference between the states of the two dots (see Fig.
7.1b).

The resonance in the lowest trace in Fig. 7.1c is due to an alignment of discrete
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Figure 7.1: a) Photo of the double quantum dot sample. The source and drain
regions as well as the left and right dots are indicated schematically. The tunnel
barriers are depicted as arrows. The metallic gates (1, 2, 3, and F) are fabri-
cated on top of a GaAs/AlGaAs heterostructure with a 2-dimensional electron
gas (2DEG) 100 nm below the surface. At 4.2 K the 2DEG mobility is 2.3 x 108
cm?/Vs and the electron density is 1.9 x 10'® m™2. Applying negative voltages to
all the gates depletes the electron gas underneath them and forms two dots with
estimated sizes of (170 nm)? and (130 nm)?. We measure the dc photo current in
response to a microwave signal (0-50 GHz) that is capacitatively coupled to gate 2.
The tunnel coupling between the two dots and to the reservoirs can be controlled
with the voltages on gate 1, 2 and 3. The dots contain about 60 and 35 electrons,
respectively. The sample is cooled in o dilution refrigerator yielding an electron
temperature in the source and drain contacts of ~ 100 mK. b) Diagram of the
electron energies in the dot for the case that an electron needs to absorb a photon
wn order to contribute to the current. Shaded areas represent the electron states
in the leads that are continuously filled up to the Fermi levels. A voltage Vsp ap-
plied between the source and drain contacts shifts one Fermi level relative to the
other. The discrete energy states in the two dots can be adjusted independently by
changing the gate voltages. c) The upper diagrams illustrate three situations of the
energy state in the left dot relative to the state in the right dot. The hatched lines
denote the Fermi levels in the leads. The bottom curve shows the current as a
function of the voltage on gate 1 for Vsp = 500 pV without applying microwaves.
A single resonance occurs when two states line up. Other curves, which have
been offset for clarity, show the current when microwaves with frequency f from
4 t0 10 GHz are applied. Now, two additional satellite resonances occur when the
two states are exactly a photon energy apart. The corresponding pholon-assisted
tunneling processes are illustrated in the upper diagrams.
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states. The other traces are measured while applying a microwave signal. The
satellite resonances are due to photon assisted tunneling processes which involve
the emission (left satellite) or absorption (right satellite) of a microwave photon.

Stoof and Nazarov [17] give a detailed description of photon assisted tunneling
in a double quantum dot. The basic idea is that electrons can absorb fixed
quanta of energy hf from a classical oscillating field. An ac voltage drop V =
Vi cos(27 ft) across a tunnel barrier modifies the tunnel rate through the barrier
as [18]:

+00
[(E)= Y JAT(E+nhf). (7.1)
n=—~co
Here T'(E) and I'(E) are the tunnel rates at energy E with and without an
ac voltage, respectively. J2(a) is the square of the n'™ order Bessel function
evaluated at a = %’;ﬂ, which describes the probability that an electron absorbs
or emits n photons of energy hf.

Figure 7.2 shows the current for several microwave powers. The dashed curve
shows the main resonance measured at zero power. As the power is increased,
satellite peaks appear corresponding to the absorption of multiple photons which
are observed up to n = 11. At these high powers the microwaves strongly perturb
tunneling. This is reflected by the non-linear dependence of the peak heights on
power (left inset of Fig. 7.2), which is in agreement with the expected Bessel
function behavior.

The right inset to Fig. 7.2 shows that the separation of the satellite peaks
from the main peak depends linearly on frequency between 1 and 50 GHz. As
we discuss below, this linearity implies that the tunnel coupling is negligible.
The electrons are thus localized on the individual dots and they have an ionic
bonding. The line proportional to 2hf is taken from data at higher microwave
powers where electrons absorb or emit two photons during tunneling.

In contrast to the case of weakly-coupled dots, covalent bonding occurs when
two discrete states that are spatially separated become strongly coupled. Elec-
trons then tunnel quickly back and forth between the dots. In a quantum me-
chanical description this results in a bonding and an anti-bonding state which
are lower and higher in energy, respectively, than the original states. Our strong-
coupling measurements were made on a second type of double-dot sample (see
inset to Fig. 7.4). To single out the current only due to microwaves we operate
the device as an electron pump driven by photons in a way described theoreti-
cally by Stafford and Wingreen [19] and by Brune et al. [20] (see the diagrams
of Fig. 7.3a-c). By sweeping the gate voltages we vary AE = Eip — Erignt,
where Ejs and E,igne are the energies of the uncoupled states in the left and




93

5
51 2"‘":“ ook potons 400
Pvr
/ | >
ob _,/’/y- %

0 eV, / hf (arb.units) 3

Current (pA)

Frequency (GHz) 50

-560 -556 -552

Gate Voltage (mV)

Figure 7.2: Current versus gate voltage of a weakly coupled double-dot. The
dashed curve is without microwaves and only contains the main resonance. The
solid curves are taken at 8 GHz for increasing microwave powers resulting in an
increasing number of satellite peaks. At the right side of the main peak these cor-
respond to photon absorption. The source drain voltage Vsp = 700 pV and the
photon energy hf = 33 peV at 8 GHz. At the highest power we observe eleven
satellite peaks, demonstrating multiple photon absorption. Left inset: Height of
the first four satellite peaks as a function of the microwave amplitude. The ob-
served height dependence agrees with the expected Bessel function behavior. Right
inset: Distance between main resonance and first two satellites as a function of
the applied frequency from 1 to 50 GHz. The distance is transferred to energy
through AE = KAV, where k 1is the appropriate capacitance ratio for our device
that converts gate voltage to energy [8]. The agreement between data points and
the two solid lines, which have slopes of h and 2h, demonstrates that we observe
the expected linear frequency dependence of the one and two photon processes.

right dot. The bonding and anti-bonding states, that are a superposition of the
wavefunctions corresponding to an electron in the left or in the right dot, have an
cnergy splitting of AE* = Egnti—bond — Fbond = +/ (AE)? + (2T)?, where T is the
tunnel coupling between the two dots. When the sample is irradiated, a photo
current may result as illustrated in Fig. 7.3a-c. A non-zero current indicates that
an electron was excited from the bonding state to the anti-bonding state, thereby
fulfilling the condition hf = AE* or conversely

AE = /(hf)? - (2T). (7.2)
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Figure 7.3: a) - ¢) Energy diagrams. Solid lines depict the energy states Eyef, and
E.ighs in the two dots for the case that the coupling is weak and that their energy
difference is simply AE = Ejoy — Erigne. When the dots are strongly-coupled, the
states delocalize over both dots, thereby forming a bonding and an anti-bonding
state. These are indicated by two dotted lines. Their energy difference is AE* =
VAE? + (2T')2. Electrons are transferred from the bonding to the anti-bonding
state when AE* = hf. In (a) Eiegs > Eyigns which results in electron pumping
from right to left corresponding to a negative current. In (b) the whole system
is symmetric (Ejpi = Erign) and consequently the net electron flow must be
zero. In (c)Epesr > Erigne which gives rise to pumping from left to right and
a positive current. (d) Measured pumped current through the strongly-coupled
double-dot. Gates 1 and 8 are swept simultaneously in such a way that we vary
the energy difference AE. The different traces are taken at different microwave
frequencies and are offset such that the right vertical azis gives the frequency.
The main resonance is absent since we have set Vsp = 0. The satellite peaks
typically have an amplitude of 0.5 pA. For weakly-coupled dots the satellite peaks
are expected to move linearly with frequency, thereby following the straight dashed
lines. In contrast, we observe that the satellite peaks follow the fitted hyperbola

hf = /AE?+ (2T)? using T as a fitting parameter.
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Figure 7.3 shows measured current traces as a function of the uncoupled
energy splitting AE, where from top to bottom the applied microwave frequency
is decreased from 17 to 7.5 GHz in 0.5 GHz steps. The distance between the
pumping peaks, which is proportional to 2 AF, decrcases as the frequency is
lowered. However, the peak distance decreases faster than linear in frequency;
the peaks follows the hyperbola rather than the straight lines. The distance
goes to zero when the frequency approaches the minimum energy gap between
bonding and anti-bonding states, hf = 2T. For frequencies smaller than the
coupling, hf < 2T, the photon energy is too small to induce a transition from
the bonding to the anti-bonding state.

The coupling between the dots can be decreased by changing the gate volt-
age on the center gate to more negative values or by applying a magnetic field
perpendicular to the sample. In Fig. 7.4 we have plotted the energy spacing
AFE at which the pumping current is at a maximum, as a function of frequency.
Different labels correspond to different center gate voltage settings and magnetic
fields. The solid lines are fits of equation (7.2) to the measured data. It follows
that the coupling 27" has been tuned from 11 to 60 peV. The good agreement
with equation 2 and the clear non-linear frequency dependence demonstrates the
control over the formation of a covalent bonding between the two dots.

Quantum dots have been suggested as possible candidates for building a quan-
tum computer [14-16]. We have shown that it is indeed possible to coherently
couple dots, and that onc can induce transitions between the extended states.
The next crucial step towards quantum logic gates is to show that the coherence
of the superposition is preserved on time scales much longer than the time needed
for manipulating the electron wave functions. A lower bound for the dephasing
time is 7, > 1 ns, which we deduce from our narrowest peaks and from the
smallest energy gaps between the bonding and anti-bonding states that we have
resolved. Future experiments include measurements of the decoherence time in
which the states are manipulated by applying the microwaves in short pulses.

We thank R. Aguado, S.M. Cronenwett, S.F. Godijn, P. Hadley, C.J.P.M.
Harmans, K.K. Likharev, J.E. Mooij, Yu. V. Nazarov, R.M. Schouten, T.H.
Stoof and N.C. van der Vaart for experimental help and useful discussions. This
work was supported by the Dutch Organization for Research on Matter (FOM)
and by the EU via the TMR network. L.P.K. was supported by the Dutch Royal
Academy of Arts and Sciences (KNAW).
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Figure 7.4: Half the spacing in gate voltage between the positive and negative
satellite peaks as a function of frequency. Gate voltage spacing has been trans-
ferred to energy difference AE (see also figure caption 2). Different curves
correspond to different coupling constants T. Solid lines are theoretical fits to
AE = \/(hf)? — (2T)2. The resulting values for 21" are given in the figure. In
the limit of weak-coupling this reduces to AE = hf which is indicated by the
dashed line. The coupling is varied by applying different voltages to the center
gate (2) or by changing the magnetic field (¢ : B=3.3 T, B: B =22 T; other
curves: B =0). The upper left inset shows a diagram of the sample’. A narrow
channel is defined by locally depleting the 2DEG using focussed ion beam implan-
tation (FIB). Two dots are then formed by applying negative voltages to the three
gates (1, 2, 3) that cross the channel. Microwaves are capacitively coupled to gate
2.
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Chapter 8

Spontaneous emission spectrum in
double quantum dot devices

T. Fujisawa, T.H. Oosterkamp, W.G. van der Wiel,

B.W. Broer, R. Aguado, S. Tarucha and
L.P. Kouwenhoven.

Abstract:

A double quantum dot device is a tunable two-level system for electronic energy
states. A dc electron current dircctly measures the rates for elastic and inelastic
transitions between the two levels. For inelastic transition energy is exchanged
with bosonic degrees of freedom in the environment. The inelastic transition rates
are well described by the Einstein coefficients, relating absorption with stimulated
and spontaneous emission. The most effectively coupled bosons in the specific
environment of our semiconductor device are acoustic phonons. The experiments
demonstrate the importance of vacuum fluctuations in the environment for little
circuits of coherent quantum devices.
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Electronic quantum devices explore quantum mechanical properties of elec-
trons confined to small regions in a solid by means of modern fabrication tech-
niques. Existing devices include semiconductor resonant tunneling diodes [1]
(based on quantum mechanical confinement), superconducting Josephson junc-
tion circuits [2] (based on macroscopic phase coherence), metallic single electron
transistors [3] (based on quantization of charge), and molecular electronic devices
[4]. The principle of operation in circuits of these devices is based on controlling
energy states, for instance, by means of an external (gate) voltage. One source
for unwanted transitions and errors is always the thermal energy from a non-
zero temperature. However, even at zero temperature vacuum fluctuations in
the environment can give rise to transitions between states of non-equal energy
by spontaneous emission of an energy quantum. Such inelastic transitions cause
errors in many proposed schemes for quantum circuits. We have studied inelastic
transitions in a fully-controllable, two-level quantum system realized in a double
quantum dot device. We can relate the transition rates involving emission to
absorption rates by the Einstein coefficients over our full energy and temperature
range. At our lowest temperature we directly measure the energy-dependent rate
for spontaneous emission. In our specific semiconductor device this energy is
emitted into the environment formed by acoustic phonons.

Our double quantum dot (Fig. 8.1a) is fabricated in the two-dimensional elec-
tron gas (2DEG) of an AlGaAs/GaAs semiconductor heterostructure [5]. The
source and drain are large 2DEG regions which serve as leads for contacting cur-
rent and voltage wires. The two dots, L and R, are separated from each other
and from the leads, by potential barriers induced by negative voltages applied to
the three metallic gates. Tunneling between the different regions is sufficiently
strong to detect current, but weak enough such that the number of electrons in
each dot is a well-defined integer. The energy states in such fully confined regions
are discrete, 0D-states; resembling discrete atomic states [6,7]. The discrete en-
ergies include contributions from single-electron charging energies, arising from
Coulomb interactions, and from quantum-mechanical confinement. The lowest
energy state for one additional electron in the left dot is labeled in Fig. 8.1b-d as
E_ and similarly Ep for the right dot. Fig. 8.1c illustrates the resonance condi-
tion, E;, = Eg, in which case an electron can tunnel elastically from an occupied
state in the source via E;, and Egr to an empty state in the drain. Such tunnel-
ing sequences of single electrons are regulated by the Coulomb charging energies
[3,7]. When the two states are not aligned, Ej, # ERg, only inelastic transitions
are allowed for which some energy needs to be exchanged with the environment.
A measured off-resonance current, therefore, directly provides information about
the coupling between electrons on the dots to degrees of freedom in the envi-
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Figure 8.1: a) Double quantum dot device defined in the 2DEG of a GaAs/AlGaAs
hetero structure by focused ion beam implantation. The narrow channel connects
the large 2D source and drain leads. Negative voltages (Vgr, Vaco, and Vgr)
applied to the metal gates (G, Go, and Ggr; widths are 40 nm) induce three
tunable tunnel barriers in the wire. The two quantum dots, L and R, respectively,
contain ~ 15 and ~ 25 electrons; charging energies are ~ 4 and ~ 1 meV; and the
measured average spacing between single-particle states are ~ 0.5 and ~0.25 meV.
(b, ¢, and d) Energy diagrams (vertical axis) along the spatial azis through the
dots (horizontal axis) for the tunnel situations: absorption, elastic and emission.
Thick vertical lines denote tunnel barriers. The continuous electron states in the
leads are filled up to the Fermi energies ps and pp. The external voltage Vg
between leads opens a transport window of size: eVyy = ps — pup. The energy,
e = E;, — Eg, is defined as the difference between the topmost filled discrete-
state of the left dot, Eyr,, and the lowest discrete-state for adding an extra electron
to the right dot, En. (The inter-dot capacitance prevents that E;, and Egr are
simultaneously occupied.) An elastic current can flow when ¢ = 0, otherwise
a non-zero current requires absorption (¢ < 0) or emission of energy (¢ > 0).
T. is the tunnel coupling and T; is the inelastic rate between the two dots. T'fp,
and T'p are the tunnel rates across the left and the right barriers. (e) Typical
measurement of the current (solid) versus € at 23 mK. The measured current is
decomposed in an elastic (dashed) and an inelastic (dotted-dashed) part.
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ronment. The inelastic rates can be analyzed with well-developed methods in
quantum optics [8,9].

Figure 8.1e shows a typical current spectrum versus € = Ej — Ep at our lowest
lattice temperature T' = 23 mK [10]. The gate voltages Vgr and Vg are swept
simultaneously such that the respective energies are like in Fig. 8.1b-d; that is,
¢ = 0 occurs in the middle between the Fermi energies of source and drain, pug
and pp, and |e| = eVgp is maximal corresponds to having the states £, and
EpR aligned to one of the Fermi energies. To analyze the large asymmetry, we
decompose the total current Iiot(€) = Ii(€) + Iinet(e > 0) into a symmetric part
Ii(e) = I;(—¢) (dashed curve) and the remaining asymmetric part Iine(e > 0)
(dotted-dashed curve). At T' = 0, I.(€) is due to elastic tunneling and has a
Lorentzian lineshape I(g) = Iomaxw?/(w? + €2) [11]. The full width at half
maximum (FWHM), 2w, can be tuned by the central gate voltage Ve roughly
from 4 to 20 peV. From measurements of I(g) at positive and negative Vsp it
is possible to extract values for the tunnel couplings I'z,, I'g and T, [11,12].

The remaining current, Ie(e > (), which is non-zero only for € > 0 (at
T = 0), is due to inelastic tunneling. In Fig. 8.1e, I,y is non-zero over an
energy range of ~100 peV; this despite that the thermal energy ksT (23 mK)
= 2 peV is much smaller. (The irregular fine structure is discussed below.) In
general we find that I;,.; vanishes when one of the levels, Ep or Epg, crosses one
of the two Fermi energies. In the specific case of Fig. 8.1e, Er and Eg cross
the Fermi energies simultaneously, implying that I;,. is cut off at ¢ = eVgp.
Below this cut off, the value of I;,, was not influenced by the value of Vgp
[13]. For T = 0, we can write the condition for a non-zero inelastic current as
pus > Ep > Eg > up = ps — eVgp. The amount of inelastic current depends on
the transition rates as: Line(e) = e(T;'+T; ' (€)+T'z') . When the inelastic rate
[;(e) from Ep to Eg is much smaller than the rates through the outer barriers,
this reduces to Line(e) = el'i(g).

The effect of a non-zero temperature on the current is shown in Fig. 8.2a.
A higher temperature T, enhances I;,; on both the emission (¢ > 0) and the
absorption (¢ < 0) side. The absorption spectrum shows an exponential tem-
perature dependence, /%7 (dashed lines) for absolute energies larger than the
elastic current measured at 23 mK, that is |¢] > w.

To analyze the temperature dependence, we assume boson statistics for the
degrees of freedom in the environment. The average occupation number (n)
of environmental modes at energy ¢ is given by the Bose-Einstein distribution
function: (n) = 1/(e/*T —1). The rates for absorption, W,, and emission,
We, can be expressed very generally by W, = B,p and W, = A + B,p, where
the Einstein coefficients stand for spontaneous emission (A}, stimulated emission
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Figure 8.2: a) Measured current versus € for T = 23 10300 mK. The current is
measured for eVsp = 140 peV while sweeping Vgr and Vgr sitmultaneously in
opposite directions such that we change the energy difference €. Gate voltage is
translated to energy € by a calibration better than 10% using photon-assisted tun-
neling measurements (16). Dashed lines indicate ezponential dependence, ¢/*T,
for |e| > kT. Arrows point at step-like structure on the emission side (¢ > 0)
and a shoulder on the absorption side (¢ < 0). From fits (11) to the elastic
current part at 23 mK we obtain hI'y = hT, = 1 peV and hT'gr = 0.1 peV for
this dataset. (b) Reconstructed current for different T. The spontaneous emis-
sion spectrum derived from the measured data at 23 mK and Egs. 8.1 are used
to reconstruct the full temperature and energy dependence. (c) The absorption
rate W, (open symbols) and emission rate W, (closed symbols) normalized by the
spontaneous emission rate A versus kT/|e|. Circles, squares, upper- and lower-
triangles, and diamonds are taken at || = 18, 24, 40, 60, and 80 peV, respectively
(see also symbols in a). The solid line indicates the Bose-Einstein distribution,
(n), whereas the dashed line shows (n) + 1.
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(B.) and absorption (Ba), and p is the energy density [8]. From the Einstein

relations, B, = A(n)/p [8], we obtain:
Li(e < 0) =Wa(e) = (n)A(=¢) (8.1)
Li(e > 0)=We(e) = ((n) + DA(e)

To test whether the inelastic current follows emission and absorption sta-
tistics, we calculate the full current spectrum from Egs. 8.1. First, we obtain
the spontaneous emission rate from A(g) = ILina(e > 0, T = 23 mK)/e. The
trace at 23 mK is effectively at zero temperature for € > 2 ueV since then (n)
& 1. The emission current at higher temperatures follows from e (e > 0, T)
= e((n) + 1)A(g), whereas the absorption current follows from Iine(e < 0, T)
= e(n)A(—¢). The reconstructed current spectrum is shown in Fig. 8.2b. The
central part of the curves (|¢| < 10 peV) is kept blank since Eq. 8.1 does not
include the T-dependence of I,;. The calculated current reproduces the measured
current well up to 200 mK. Even the small step-like feature seen at € ~ 30 peV
is reflected by a shoulder-like feature at € ~ -30 peV in the measured and in
the calculated absorption spectra (indicated by arrows). For T' > 200 mK the
measured current significantly exceeds the calculated current, which is probably
due to thermally excited electrons (Eq. 8.1 only describes the T-dependence of
the environment. The thermal excitations in the electron leads are not included.)
Further confirmation of the applicability of the Einstein relations to our quantum
dot system follows from the prediction:

Iinel(E > 0) - Iinel(g < 0) _ We — Wa _
eA(fe]) A

which is valid independent of temperature. Fig. 8.2c shows a plot of the nor-
malized rates, W,/A and W, /A, versus kgT/|e| for various € and T up to 200
mK. The measured data closely follow the prediction m’%‘!ﬁ = 1; that is, the
normalized rates, W,;/A and W, /A, differ by one over the temperature range T’
< 200 mK without fitting any parameter.

The inelastic rate for a two-level system coupled to a bosonic environment at
T = 0 is expected to have a T, dependence [14,15]. Still without identifying the
bosonic environment, we can test this dependence on the elastic tunnel coupling
T, between the two dots. Figure 8.3a shows that the inelastic current clearly
increases with 7,.. For the largest coupling we obtain a saturation where the
elastic current peak can no longer be distinguished. By fitting the elastic current
part to a Lorentzian lineshape [11] we can obtain rough estimates for 7, as long as
the current is less than the saturation value. We find that with these fitted values,
the inelastic current scales as T¢* with an exponent a = 2.5 ~ 3, may be somewhat
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larger than expected. Figure 8.3b shows the effect of the increased coupling on the
symmetric part of the current at low temperature. For small tunnel coupling, we
always obtain Lorentzian lineshapes. For increasing couplings, the data still fits
to a Lorentzian tail on the absorption side. However, we generally find significant
deviations for small €, implying that for large coupling the elastic and inelastic
rates can become of the same order. This may form a significant limitation for
the coherence time in coupled quantum devices [16].

The importance of fluctuations in the environment on electron tunneling
through quantum devices has been recognized for a long time. Environmental
studies on Coulomb blockade devices have only discussed effects due to absorption
[3]. For emission it is required that electrons are first pumped to a higher energy
state. This has recently been done in a superconducting Cooper pair transistor
under microwave irradiation {17]. In the case of a double dot, pumping occurs
when E;, > Ejx and an electron tunnels in from the left reservoir to E;. A double
dot thus offers a unique two-level system that is pumped by a dc voltage without
inducing heating currents. It is therefore possible to reach an out-of-equilibrium
situation so close to T = 0 that vacuum fluctuations become the main source for
generating electron transport.

To identify whether photons, plasmons, or phonons form the bosonic environ-
ment, we measured spontaneous emission spectra while placing the double dot
in different electromagnetic environments. In the regime 10-100 eV, the typical
wavelengths are 1-10 cm for photons and 0.3 to 30 cm for 2DEG plasmons. We
have tested the coupling to the photonic environment by placing the sample in
microwave cavities of different size [18]. To check the coupling to plasmons, we
have measured different types of devices with largely different dimensions of the
2DEG leads, gate pads, and bonding wires. Both types of variation had no effect
at all on the emission spectra; even the finestructure was reproduced.

The third option of acoustic phonons is the most likely possibility {19]. Phonon
emission rates have been calculated for single dots [20]. For a double dot system,
we can obtain the general energy dependence [15]. For a deformation potential
we expect a rate dependence of ¢~2 (¢ for 3D phonons and constant for 2D
phonons) and for piezo-electric interaction of é”~* (1/e for 3D phonons and 1/¢?
for 2D surface acoustic waves) [21]. In Fig. 8.3c we compare traces measured on
two different types of devices. Here, the emission current is plotted versus € on a
log-log scale. Ignoring the bumps, we find an energy dependence between 1/¢ and
1/e?. This implies that the dominant emission mechanism is the piezo-electric
interaction with 2D or 3D acoustic phonons. Note that a 1/ or 1/e? dependence
should be avoided in coherent devices, since the inclastic rate becomes large near
resonance (& ~ 0) [16].
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Figure 8.3: Current spectrum for different coupling energies at 23 mK. (a) The
magnetic field is 1.6 T for (1) and 2.4 T for the other curves (10). The curves
have an offset, and curve (i) is multiplied by 5. Rough estimates for the coupling
energies are: (i) hTc (~ 0.1 peV) <« hT'r (~ 10 peV), (i) AT, (~ 1 peV)
~ hI'p (~ 1 peV), (i) RT, > h'g (~ 0.1 peV), and (iv) kT, > hlg (~ 0.01
ueV) and Ty 2 Ty for all curves. The two dotted curves are the derivatives
—dI/de in arbitrary units for curves (i) and (it) to enhance the bump-structure.
(b) Logarithmic-linear plots for (i) and (it). Dashed lines are Lorentzian fits.
For (i) we chose parameters that fit the tail for negative €. (c) Logarithmic-
logarithmic plots of the emission spectrum for two different samples. The sold
lines are taken on the FIB sample in Fig. 1A (upper trace is the same as (i) in
a; lower trace is for coupling energies between (i) and (i) in a). The dotted line
15 taken on a surface gate sample with o distance between left and right barriers
of 600 nm (12). The dashed lines indicate a 1/¢ and 1/€* dependence ezpected
for piezo-electric interaction with 8D and 2D phonons, respectively.

The bumps observed in both type of devices, suggest the existence of reso-
nances, for instance, due to a finite size in the phonon environment. The bumps
are particularly clear in the derivative of the current to energy (dotted curves
in Fig. 8.3a). The large bump in Fig. 8.3a at ¢ = 30 ueV corresponds to a
frequency of f = ¢/h = 7.3 GHz. For 3D phonons this yields a wavelength
NP = B3D/f = 640 nm (s*C = 4800 m/s is the 3D sound velocity), whereas
for 2D surface acoustic waves A\*P = s2P/f = 380 nm (5P = 2800 m/s). These
wavelengths both, more or less, fit with the dimensions of the two quantum dot
devices. We have not yet been able to control these resonance by studying devices
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with a variety of gate dimensions. However, we believe that it is possible to gain
control over the phonon environment by making 3D phonon cavities in hanging
bridges [22] or by creating a 2D phonon bandgap using a periodic gate geometry
[23].
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Nazarov, Y. Tohkura, N. Uesugi, M. Uilenreef, and N. van der Vaart for help and
discussions. Supported by the Dutch Foundation for Fundamental Research on
Matter (FOM), L.P.K. by the Royal Netherlands Academy of Arts and Sciences.

References

(1) H. Mizuta and T. Tanoue, The Physics and Applications of Resonant Tun-
nelling Diodes (Cambridge Univ. Press, Cambrige).

[2] The New Superconducting Electronics, Proceedings of a NATO Advanced
Study Institute, H. Weinstock and R.W. Ralston Eds. (Kluwer, Dordrecht,
1992), ser. E, vol. 251.

[3] Single Charge Tunneling, H. Grabert and M. H. Devoret, Eds., (Plenum
Press, New York, 1992) Ser. B, vol. 294.

[4] P. L. McEuen, Nature, 393, 15 (1998); S. J. Tans, A. R. M. Verschueren,
and C. Dekker, Nature, 393, 49 (1998).

[5] T. Fujisawa and S. Tarucha, Superlattices and Microstructures 21, 247 (1997);
Jpn. J. Appl. Phys. 36, 4000 (1997).

[6] See for recent popular reviews: R. Ashoori, Nature 379, 413 (1996); L. P.
Kouwenhoven and C. M. Marcus, Physics World, pp.35-39 (June 1998).

[7] For a review, see L. P. Kouwenhoven et al., in Mesocopic Electron Transport,
Proceedings of a NATO Advanced Study Institute, L. L. Sohn, L. P. Kouwen-
hoven, and G. Schén, Eds., (Kluwer, Dordrecht, 1997), ser. E, vol. 345, pp.
105-214; available on line at http://vortex.tn.tudelft.nl/"leok/papers/.

(8] P. W. Milonni, The Quantum Vacuum, an Introduction to quantum electro-
dynamics (Academic Press, San Diego, 1994).

[9] The statistics of our inelastic emission should be regulated by the statistics
of single-electron tunneling, see A. Imamoglu and Y. Yamamoto, Phys. Rev.
B 46, 15982 (1992).

[10] The sample was cooled in a dilution refrigerator with a lowest temperature
of 23 mK. Due to noise, the effective electron temperature is ~50 mK in the
leads. In all measurements we apply a perpendicular magnetic field between




108 Chapter 8. Inelastic processes.

1.6 and 2.4 T to maximize the single-particle spacing such that we can neglect
transport through excited states.

[11] The elastic current is given by the formula Iosic(e) = eTTr/(T3(2 +
Tr/TL) +T%/4+ (¢/h)?), see Yu. V. Nazarov, Physica B 189, 57 (1993); T.
H. Stoof and Yu. V. Nazarov, Phys. Rev. B 53, 1050 (1996).

[12] N. C. van der Vaart, et al., Phys. Rev. Lett. 74, 4702 (1995).

[13] Also co-tunneling can give excess current for € # 0. In our measurements,
however, the co-tunneling current is less than 0.01 pA and can be neglected.
For a review on co-tunneling see D. V. Averin and Yu. V. Nazarov, in Ref.
3, pp. 217-247.

(14] A. J. Legget, et al., Rev. Mod. Phys., 59, 1 (1987).

[15] A T?-dependence can also be obtained from perturbation theory when T, <
g, see L. I. Glazman and K. A. Matveev, Sov. Phys. JETP 67, 1276 (1988).

[16] We have reported a coherent coupling effect in double quantum dots using
photon-assisted tunneling experiments, in the previous chapter. These obser-
vations are made when a small bias voltage is applied. In this case emission
processes do not give rise to current.

[17] Y. Nakamura, C. D. Chen, and J. S. Tsai, Phys. Rev. Lett. 79, 2328 (1997).

[18] We used a cylindrical cavity (36 mm¢ x 84 mm) which has a minimum
resonance energy of about 20 peV, and a rectangular cavity (22 x 19 x 8
mm?) with resonance frequency of about 40 ueV.

[19] Coupling to optical phonons is efficient only at much larger energies.
[20] U. Bockelmann, Phys. Rev. B 50, 17271 (1994).

21] For phonons the inelastic rate at 7' = 0 can be written as T; ~ (T,/e)2J(¢/h)
where J(e) ~ %ﬂg(e) is the spectral function [14]. The phonon density of
states g(e) ~ £P~1, such that I'; ~ T.2c*(¢)eP~*. When we neglect possible
fine stucture in ¢(e), we have for deformation potential ¢ ~ € and thus I'; ~

eP~2, while for piezo-electric interaction ¢ ~ constant and thus I'; ~ eP—4,

[22] A. N. Cleland and M. L. Roukes, Nature, 392, 160 (1998).
23] J. M. Shilton, et al., J. Phys.: Cond. matter 8, L531 (1997).




Chapter 9

A tuneable Kondo effect in quantum
dots

S.M. Cronenwett, T.H. Oosterkamp, and L.P. Kouwenhoven.

Abstract:

We demonstrate a tunable Kondo effect realized in small quantum dots. We can
switch our dot from a Kondo system to a non-Kondo system as the number of
electrons on the dot is changed from odd to even. We show that the Kondo tem-
perature can be tuned by means of a gate voltage as a single-particle energy state
nears the Fermi energy. Measurements of the temperature and magnetic field de-
pendence of a Coulomb-blockaded dot show good agreement with predictions of
both equilibrium and non-equilibrium Kondo effects.
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Quantum dots are small solid state devices in which the number of electrons
can be made a well-defined integer N. The electronic states in dots can be
probed by transport when a small tunnel coupling is allowed between the dot
and nearby source and drain leads. This coupling is usually made as weak as
possible to prevent strong fluctuations in the number of confined electrons. A
well-defined number of electrons also implies a definite confined charge; i.e. N
times the elementary charge e. The quantization of charge permits the use of a
simple model in which all the electron-electron interactions are captured in the
single-electron charging energy e?/C, where C is the capacitance of the dot. This
simple model has been successful in describing a wealth of transport phenomena
which are generally known as single-electron transport and Coulomb blockade
effects [1].

If the tunnel coupling to the leads is increased, the number of electrons on the
dot becomes less and less well-defined. When the fluctuations in N become much
larger than unity, the quantization of charge is completely lost. In this open
regime, theories of non-interacting electrons usually give a proper description
of transport. The theory is much more complicated in the intermediate regime
where the tunnel coupling is relatively strong but the discreteness of charge still
plays an important role. Here, the transport description needs to incorporate
higher-order tunneling processes via virtual, intermediate states. When spin is
neglected these processes are known as cotunneling [2]. When one keeps track of
the spin it can be convenient to view tunneling as a magnetic exchange coupling.
In this case, the physics of a quantum dot connected to leads becomes similar
to the physics of magnetic impurities coupled to the conduction electrons in a
metal host; i.e. the Kondo effect [3,4]. Recent theory has predicted new Kondo
phenomena in quantum dots [5-7]. This unique spin system allows one to study
an individual, artificial, magnetic impurity and tune in-situ the parameters in
the Kondo problem. The first experimental demonstration for a Kondo effect
in quantum dots was recently reported by Goldhaber-Gordon et al. [8]. In
the present paper, we report more extensive measurements of the temperature
dependence of the equilibrium and non-equilibrium Kondo effect in quantum
dots which agree well with the results of reference [8]. In addition, we present
data using both perpendicular and parallel magnetic fields which unambiguously
identify the Kondo physfcs, and we demonstrate the tunability of the Kondo
temperature with an applied gate voltage.

In order to explain the important parameters for the Kondo effect we use the
energy diagrams of Fig. 9.1. We treat the dot as an electron box separated from
the leads by tunable tunnel barriers with a single spin-degenerate energy state £o
occupied by one electron of either spin up or spin down. The addition of a second
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Figure 9.1: a) Schematic energy diagram of a dot with one spin-degenerate energy
level €y occupied by a single electron. U is the single-electron charging energy, and
'y and T'p give the tunnel couplings to the left and right leads. The parameters €g,
I'r, and I'p can be tuned by the gate voltages. The states in the source and drain
leads are continuously filled up to the electrochemical potentials, uy, and pup. The
series (A1, A2, A8) depicts a possible virtual tunnel event in which the spin-up
electron tunnels off the dot and a spin-down electron tunnels on the dot. Such
virtual tunnel events which involve spin-flips build up a macroscopically correlated
state with properties that are known as the Kondo effect. (b) The Kondo effect
can be pictured as a narrow resonance in the density-of-states (DOS) of the dot
at the Fermi energies of the leads, pr, = pr. The lower energy bump in the DOS
is the broadened single particle state €9. (c) A source-drain voltage V results in
the difference: eV = ug, — pg. For finite V', the DOS peak splits in two; one peak
located at each chemical potential. (d) SEM photo of the gate structure which
defines our quantum dots in the two-dimensional electron gas (2DEG) which is
about 100 nm below the surface of a GaAs/AlGaAs heterostructure. Dot 1 has an
estimated size of 170 nm x 170 nm and confines ~ 60 electrons while dot 2 is about
130 nm z 130 nm containing ~ 35 electrons (see ref. 13 for more details). We

measure Coulomb oscillations by simultaneously sweeping the voltages on gates 1
and 3.
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electron to this state costs an on-site Coulomb energy U = €2/C. In the case
of Fig. 9.1a first-order tunneling is blocked. An electron cannot tunnel onto the
dot since the two electron energy g + U exceeds the Fermi energies of the leads,
pr and pg. Also, the electron on the dot cannot tunnel off because g9 < uy,
wr. This blockade of tunneling is known as the Coulomb blockade (CB) [1]. In
contrast to first-order tunneling, higher-order processes in which the intermediate
state costs an energy of order U are allowed for short time-scales. In particular,
we are interested in virtual tunneling events which effectively flip the spin on
the dot. One such example is depicted in Figs. 9.1a(1,2,3). Successive spin-flip
processes effectively screen the local spin on the dot such that the electrons in
the leads and on the dot together form a spin-singlet state. This macroscopically
correlated state gives rise to the Kondo effect, which is well-known from low-
temperature resistivity measurements on metals containing a small fraction of
magnetic impurities [9]. In a quantum dot, the Kondo effect can be described as
a narrow peak in the density-of-states (DOS) at the electrochemical potentials of
the leads, 11, = ig, as shown in Fig. 9.1b [3-7]. This Kondo resonance gives rise to
enhanced conductance through the dot. Qut of equilibrium, when a bias voltage
V is applied between the source and drain, eV = uy — pg, the Kondo peak in the
DOS splits into two peaks, each pinned to one chemical potential (Fig. 9.1c) [5,7).
This splitting leads to two specific features in transport. First, at zero magnetic
field, the differential conductance dI/dV versus V mimics the Kondo resonance in
the DOS, so a peak in dI/dV is expected around zero voltage. Second, a magnetic
field lifts spin degeneracy resulting in a dI/dV versus V showing two peaks at
eV = +gupB [5,10], where g is the Landé factor and pp is the Bohr magneton.

Figure 9.1d shows the gate structure of our GaAs/AlGaAs quantum dot de-
vices. Negative voltages applied to the gates control the parameters &y, the
electron number N, and T';, I'g, the energy broadening of the discrete states due
to the coupling to the left and right leads. The conductance shows CB oscilla-
tions on varying the gate voltage V;; see for example Fig. 9.2a. Although the
exact number of electrons N is not known, each period corresponds to a change
of one electron on the dot. N should thus oscillate between an even and an odd
number. If we assume spin-degenerate filling of the single-particle states [11], the
total spin on the dot is zero when N = even (i.e. all states are double occupied
with anti-parallel spins) while for N = odd the total spin is :I:% (i.e. the topmost
state is singly occupied with either spin up or down). In other words, for even N
the dot is non-magnetic while for odd N the dot has a net spin magnetic moment
[12]. This property allows quantum dots to be tuned between a Kondo and a
non-Kondo system as we vary N with the gate voltage.

Measurements were made on two quantum dots of similar shape (Fig 9.1d)
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{13] in a dilution refrigerator with an effective electron base temperature Thase
~ 45 mK [14]. The spin coupling interactions which give rise to Kondo physics
contribute significantly only for temperatures comparable to or lower than the
Kondo temperature Tk ~ [U F]1/2 exp [-7m(p — €0/2T)] , where I' = T';, + T [15].
To make this regime accessible experimentally, I" is made as large as possible by
setting the gate voltages V; such that the broadened CB oscillations in Fig. 9.2a
slightly overlap. This implies that I' ~ A where A is the single-particle level
spacing measured as 0.1 meV and 0.15 meV in dots 1 and 2 respectively [16].
The respective Coulomb energies in the weak tunneling regime were measured as
U =1meV and 1.3 meV. U decreases by a factor of ~ 2 in the stronger coupling
regime of our measurements [17].

The dc conductance G = I/V from dot 1 is shown in Fig. 9.2a for electron
temperatures of 45 and 150 mK. The base temperature (These ~ 45 mK) mea-
surement shows even-odd peak spacings (inset, Fig. 9.2b) which arise from the
filling of spin-degenerate energy states. The energy cost to add an odd numbered
electron onto an unoccupied energy state of the dot is the Coulomb energy plus
the single particle spacing, U + A, while the energy is only U to add an even
clectron to fill the same energy state. Although the absolute value of N is not
known, we obtain the parity of the electron number for the valleys in Fig. 9.2a
from the even-odd spacings together with magnetic field measurements [11]. We
note that valleys with smaller peak spacings (N = odd) also have a larger basc
temperature conductance than their neighbors, a result of the Kondo peak in the
DOS enhancing the valley conductance when N = odd. Comparing the valley
conductances, we see that valleys 3, 5 and 7, decrease when T is increased to 150
mK, while the even valleys increase. This even-odd effect is illustrated in more
detail in Fig. 9.2b where we plot the change in valley conductance with temper-
ature, 0Gyaiiey(T) = Grattey(T) — Guatiey(Thase). While all the valley conductances
for N = even increase with T', for N = odd the spin-correlation is destroyed by an
increasing T' such that Gyauey first decreases. The minimum in 6G gy strongly
resembles the resistance minimum in metallic Kondo systems [9].

Measurements on dot 2 also show agreement with expectations of the Kondo
effect. The middle valley in Fig. 9.3a is identified as a "Kondo” valley because
it shows a larger base temperature conductance than the neighboring valleys.
The detailed T' dependence in Fig. 9.3b shows that this Kondo valley also has
a minimum conductance around 200 mK. Furthermore, the conductance peaks
on either side of the Kondo valley decrease and move apart with increasing T
(sce also Fig. 9.3b) in qualitative agreement with theory [4,5]. The motion of
the peak position, which has not been previously reported, is attributed to a
renormalization of the non-interacting energy state £y due to fluctuations in N.
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Figure 9.2: a) Linear response conductance G = I1/V versus gate voltage V,; mea-
sured in dot 1 at B=0 for V=179 uV at 45 mK (solid) and 150 mK (dashed).
The parity of the valley numbering is indicated by an odd or even number of N.
From left to right, the CB peaks become broader (i.e. G is increasing) because the
tunnel barrier induced by gates 1 and 2 decreases when increasing the voltage on
gate 1. Increasing T from 45 to 150 mK increases the conductance of the even
numbered valleys but decreases the conductance of valleys 3, 5 and 7. The de-
tailed temperature dependence is shown in (b) where we plot the change in valley
conductance 8Gyaiey(T) = Guattey(T) — Guatiey(Thase) With Toase ~ 45 mK. The
inset to (b) shows the spacings AV, between adjacent peaks. We observe a larger
(smaller) peak spacing for even (odd) N. (c) Differential conductance, dI/dV,
as a function of V for the center of each CB valley in (a). The odd valleys have
a pronounced zero-bias mazimum.

To investigate the Kondo effect out of equilibrium we measure the differential
conductance dI/dV in the center of the Kondo valley of Fig. 9.3A. At base
temperature, the dI/dV has a peak at V = 0 (Fig. 9.3c, bold curve). The peak
has a width ~ 50 mV which is narrow compared to the energy scales of U, A,
and G. Increasing T broadens the dI/dV peak until it completely disappears
at ~ 300 mK. The insets to Fig. 9.3c give the temperature dependence of the
dI/dV peak maximum on a logarithmic scale and the peak width (the full-width
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Figure 9.3: a) Conductance G for B =0 and V = 5.9 uV at 45 (bold curve),
75, 100 and 130 mK in dot 2. Due to the smaller size of dot 2, the tunnel
barriers increase more quickly with negative gate voltage so we can observe only
3 consecutive valleys in the Kondo regime. The middle valley shows pronounced
Kondo behavior. This figure shows the dependence on T, V and ey. (b) Left axis:
6Gyaiiey(T) (solid diamonds) for the center of the middle, Kondo valley in (A).
Right axis: gate voltage spacing AVy(T) of the peaks bordering the Kondo valley.
Increasing T results in a Kondo minimum in §Gyauey. Stmultaneously, we observe
an increasing peak spacing which is ascribed to a renormalization of the energy
level &g. (c) Differential conductance dI/dV wversus V for T = 45 (bold), 50,
75, 100, 130, 200, and 270 (dashed) mK. The gate voltage is set in the center of
the middle valley. The peak mazimum (left inset) is logarithmic in T. The peak
width (the full width at 3 maz, right inset) is linear in T with a slope of 4.8 kg
(dotted line). The asymmetry in the zero-bias peak is probably because I'y, # I'g.
(d) Zero-bias peak in dI/dV at 45 mK for different gate voltages stepping from
the center of the Kondo valley in (a) (bottom curve, Vg = —363 mV) up the left
side of the CB peak (top curve, V, = —366 mV). The curves have been shifted
so the background values align at ~ 75 pwV. The amplitude of the zero-bias peak
increases as the conductance G increases moving up the flank of the CB peak.
(e) We measure the right half-width at half-maz (RWHM) of the zero-bias peak
(relative to the baseline dI/dV at ~ 75 V) which begins to increase halfway up
the CB peak on either side The increasing width follows the increase of the Kondo
temperature Tx above Thase. The increase in Tk results from bringing €9 lowards
the Fermi energies ur = ug by tuning the gate voltages.
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at % max) on a linear scale. The logarithmic T' dependence of the maximum is
expected for Tx < T [3]. At low temperatures, the width is expected to saturate
at ~ Tx. We do not observe such saturation which suggests that Tx < 45 mK
in the middle of the Kondo valley.

In order to increase Tx ~ [U T2 exp [—m (i — £0/2T")], we decrease the dis-
tance between g and the Fermi energy by moving away from the Kondo valley
towards a neighboring CB peak. The zero-bias dI/dV peak is seen to increase
in both height and width when tuning & towards the Fermi energy (Fig. 9.3b).
The width of the dI/dV peak, shown in Fig. 9.3e, is determined by the larger of
Tx or T. The increase in width when approaching the CB peaks on either side
of the Kondo valley indicates that here Tk exceeds T'. Figure 9.3e demonstrates
the first control of Tk in a Kondo system. The largest value we obtain for Tk
can be estimated from the largest dI/dV peak in Fig. 9.3d. From a width of
~ 80 uV we get T ~ 1 K.

The absence and presence of a zero-bias peak for N = even or odd, respectively
can be seen in the dI/dV measurements for the valleys of dot 1 in Fig. 9.2c.
Valleys 3, 5 and 7 indeed have a narrow zero-bias peak. Valley 4 has a minimum
in the dI/dV [18] while valley 6 has a flat dI/dV. Note that valley 2 shows a
slight maximum at V = 0. This could arise from a dot with a net spin of £1
instead of 0. Occasionally we observe small shoulders on the sides of peaks in
dI/dV. 1t is yet unclear whether these shoulders are related to the fact that our
dots have multiple levels [16].

A magnetic field By| in the plane of the two-dimensional electron gas (2DEG)
splits the spin-degenerate states of the quantum dot by the Zeeman splitting,
€+ = €0 = gupBy /2. When the dot has an unpaired electron, the Kondo peak
in the DOS at each chemical potential is expected to split by twice the Zeeman
energy, 2gupB) [5]. In equilibrium, there is no longer a peak in the DOS at
ur = R, and the zero-bias conductance is not enhanced. Instead, one expects
the peak in dI/dV to be shifted to a finite bias: V = tgupB) /e = £25 uV/T,
where g = —0.44 for bulk GaAs. In Fig. 9.4a we show that indeed the zero-bias
peak splits into two peaks when we increase Bj| from 0 to 7 T. The peak positions,
shown in Fig. 9.4b, fall directly on top of the theoretical prediction, £25 uV/T
(dashed lines) [19]. 4

The correct splitting of the dI/dV peak with magnetic field has been heralded
as the most distinct sign of Kondo physics [5]. Probing the Zeeman doublet single-
particle state with the differential conductance could also reveal a peak split
linear in Byj. However, in this case, the splitting is gate voltage dependent. A
gate voltage independent peak split by 2915 B) distinctively identifies the Kondo
effect with no free parameters. Figures 9.4d and 9.4e show a grayscale plot of the
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peak position (uV)

Figure 9.4: a) The splitting of the zero-bias peak in the differential conductance
dI/dV with a magnetic field B in the plane of the 2DEG. From top to bottom:
By =0.10, 0.43, 0.56, 0.80, 0.98, 1.28, 1.48, 2.49, and 3.49 Tesla. The curves are
offset by 0.02 €%/h. Above ~ 0.5 T we resolve a splitting which increases linearly
with By|. (b) Position, in bias voltage, of the dI /dV mazima as a function of By
up to 7 T. The dashed line indicates the theoretical splitting of +2gupB/e + 25
pV/T with g = —0.44 for GaAs. (c) Split peaks at 36 pV/T are observed in
the dI/dV of the quantum dot and also in a single point contact (qpc) (formed
by a negative voltage on gates 1 and 3 only) in a perpendicular magnetic field
B, =1.89 T. The Landau level filling factor is 4 at this field in the bulk 2DEG.
Measurements at other B, and in other gpcs also showed similar structure. In
contrast, the dI/dV of a qpc in high By is flat. (d, e) Grayscales of dI/dV as
a function of V; and V show the zero-bias peak for By = 0.1 T split into two
shoulder peaks at B = 1.5 T. This valley is the Kondo valley from Fig. 9.3a.
The contour of the CB peaks (horizontal) and the mazima in the dI /dV (vertical)
are indicated by dashed lines. The valleys on either side of the Kondo valley do
not show a zero-bias or split dI/dV peak. The arrows on the bottom azis of (e)
indicate the theoretical splitting, which should be independent of V,, with a value

of £37.5 pV at B = 1.5 T. The arrows matches the experimental results very
well,
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dI/dV as a function of V and V, over a Kondo valley. The maximum of the CB
peaks (horizontal) and the Kondo dI/dV peak (vertical) are indicated by dashed
lines. In both Fig. 9.4d and 9.4e, the maxima in dI/dV occur only for the Kondo
valley and not for the neighboring valleys. We point out that the location of the
split maxima for B = 1.5 T are independent of Vg throughout the valley.

Peaks in dI/dV reported in [8] were split by 33 £V/T in a magnetic field B,
perpendicular to the plane of the 2DEG. This value, significantly smaller than
the expected 50 pV/T, could be a result of the formation of quantum Hall states
in-the leads. Figure 9.4c shows the dI/dV at By = 1.89 T for both our quantum
dot (solid) and a single quantum point contact (dashed). Note that each shows
split peaks in dI/dV at 36 uV/T. The point contacts of both our dots showed
significant structure around ~ 35 uV/T in a perpendicular magnetic field. What
might cause a field dependent splitting in the dI/dV of a quantum point contact
is unclear. However, the orbital changes caused by B, severely complicate the
identification of Kondo physics in a perpendicular magnetic field. Furthermore,
with the formation of spin-polarized Landau levels in the leads, a single electron
on the dot cannot equally couple to both spin states in the leads which should
suppress the Kondo resonance.

In conclusion, we have presented a coherent dataset illustrating the Kondo
effect in quantum dots. We have demonstrated the tunability of the Kondo effect
between valleys with even and odd numbers of electrons. As well, we have shown
that the Kondo temperature in a quantum dot can be tuned with a gate voltage,
and we have directly measured the Kondo peak in the DOS at B) = 0 and the
split Kondo peaks at B) # 0.
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Summary

This thesis presents an experimental study of the transport properties of semi-
conductor quantum dots. Vertical and lateral quantum dots are investigated.
The vertical quantum dots are etched from a semiconductor double-barrier het-
erostructure (DBH) and a metal gate electrode is deposited around it. Electrons
are confined on the dot in all three dimensions. The surface potential together
with the gate potential confines the electrons in the lateral x- and y-directions
while the DBH provides the confinement in the growth z-direction. The lat-
eral quantum dots are defined in the two dimensional electron gas (2DEG) of
GaAs/AlGaAs heterostructures by means of metallic gates, which are fabricated
on top of the heterostructure. Applying negative voltages to the gates depletes
the electron gas underneath them and forms an isolated island of electron gas in
the 2DEG.

The islands of confined electrons in both systems are weakly coupled to the
leads by tunnelbarriers. The addition of a single electron, charges the dot by
the elementary charge e. This costs a finite charging energy e?/C, where C is
the capacitance between the dot and its surroundings. At low temperatures,
this charging energy can block the current through the island and give rise to
Coulomb oscillations in the conductance, as a function of the voltage on one of
the gates.

In chapter 2, we use single-electron tunneling spectroscopy to probe electronic
states of a few-electron vertical quantum dot-atom. At zero magnetic field the
addition energy reveals a shell structure associated with a 2D harmonic potential.
As a function of magnetic field, current peaks evolve in pairs, arising from the an-
tiparallel filling of spin-degenerate states. Close to zero magnetic field, however,
this pairing behavior is altered to favour the filling of states with parallel spins
in line with Hund’s rule. The results are in good agreement with an extended
constant interaction model. For the system with two electrons N = 2, we inves-
tigate a singlet-triplet transition. In this case the extended constant interaction
is not sufficient to explain the value of the magnetic field at which the transition
occurs.

In chapter 3, a study of the ground and excited states in quantum dots con-
taining 1 to 12 electrons shows that the quantum numbers of the states in the ex-
citation spectra can be identified and compared to exact calculations. A magnetic
field induces transitions between ground and excited states. These transitions are
discussed in terms of crossings between single-particle states, singlet-triplet tran-
sitions, spin polarization, and Hund’s rule. These impurity-frce quantum dots
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allow ”atomic physics” experiments to be performed in magnetic field regimes
not accessible for atoms.

In chapter 4, we have measured electron transport at high magnetic fields,
through a vertical quantum dot with up to 40 electrons. Over some region in
magnetic field the electrons are spin polarized and occupy successive angular
momentum states, i.e. the maximum density droplet (MDD) state. The stability
region where the MDD state is the ground state, decreases for increasing electron
number. The instability of the MDD is accompanied by a redistribution of charge
which increases the area of the electron droplet.

In chapter 5, we study the magnetic field evolution of the energy states in
lateral rather than in vertical quantum dots. To quantify the evolution of the
energy states we look at their magnetization, i.e. the derivative of the energy of
a state with respect to the magnetic field. To obtain sharper resonances of the
states and thereby a better energy resolution we have measured two quantum
dots in series.

In chapter 6, we have used photon-assisted tunneling to study the interac-
tion between microwave light and electrons occupying discrete zero dimensional
(0D) states in a single lateral quantum dot. We have measured photon-assisted
tunneling through a quantum dot with 0D-states. For photon energies smaller
than the separation between 0D-states we observe photon sideband resonances
of the ground state. When the photon energy exceeds the separation between
0D-states we observe photon induced excited state resonances. We identify the
different resonances by studying their dependence on photon frequency, magnetic
field and power.

In chapter 7, two quantum dots are connected to form an ’artificial molecule’.
Depending on the strength of the inter-dot coupling, the two dots can have an
ionic binding (i.e. electrons are localized on the individual dots) or a covalent
binding (i.e. electrons are delocalized over both dots). The covalent binding leads
to a bonding and an anti-bonding state with an energy splitting proportional to
the tunnel coupling. In the dc current response to microwave excitation, we
observe a transition from an ionic bonding to a covalent bonding, when we vary
the inter-dot coupling strength.

In chapter 8, the double quantum dot device is used as a tunable two-level
system for electronic energy states. A dc electron current directly measures the
rates for elastic and inelastic transitions between the two levels. For inelastic
transitions, energy is exchanged with bosonic degrees of freedom in the environ-
ment. The inelastic transition rates are well described by the Einstein coefficients,
relating absorption with stimulated and spontaneous emission. The most effec-
tively coupled bosons in the specific environment of our semiconductor device
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are acoustic phonons. The experiments demonstrate the importance of vacuum
fluctuations in the environment for little circuits of coherent quantum devices.
In chapter 9, we demonstrate a tunable Kondo effect realized in small quantum
dots. We can switch our dot from a Kondo system to a non-Kondo system as
the number of electrons on the dot is changed from odd to even. We show that
the Kondo temperature can be tuned by means of a gate voltage as a single-
particle energy state is shifted relative to the Fermi energy. Measurements of the
temperature and magnetic field dependence of a Coulomb-blockaded dot, show

good agreement with predictions of both equilibrium and non-equilibrium Kondo
effects.
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Samenvatting

In dit proefschrift wordt een experimenteel onderzoek beschreven aan de elek-
trische eigenschappen van halfgeleider quantum dots. Zowel verticale als laterale
quantum dots worden bestudeerd. De verticale dots zijn pilaartjes die geétst
zijn uit een dubbele barriére heterostructuur. Hieromheen is een metalen gate
gedeponeerd. Electronen in de dot zijn dan in drie dimensies opgesloten. De
dubbele barriére heterostructuur sluit de electronen op in de z-richting, tussen
de twee barrieres. De oppervlakte potentiaal gecombineerd met de potentiaal
die veroorzaakt wordt door de gate sluit de electronen op in de x en y richting.
De laterale quantum dots zijn gedefinieerd in een twee dimensionaal electronen
gas (2DEG) gemaakt van een GaAs/AlGaAs heterostructuur. Boven dit 2DEG,
aan het oppervlak van de heterostructuur, zijn metalen gates aangebracht. Door
een negatieve spanning op deze gates te zetten kunnen de electronen weggedrukt
worden in het 2DEG eronder. Hierdoor kan een eilandje van elektronen gemaakt
worden in het 2DEG.

De eilandjes van opgesloten elektronen zijn zowel in de verticale als laterale
dots zwak gekoppeld aan de buitenwereld via tunnelbarrieres. Als er een extra
electron op een van de dots gebracht wordt dan wordt de dot opgeladen. Dit
heeft tot gevolg dat de potentiaal van de dot stijgt met cen waarde e?/2C, de
ladings energie, waarin C de capaciteit is van de dot naar de omgeving. Bij zeer
lage temperatuur kan deze ladingsenergie ervoor zorgen dat geleiding door de dot
oscillaties vertoond als de spannning op een van de gates wordt veranderd. Deze
oscillaties worden Coulomb oscillaties genoemd.

In het tweede hoofdstuk van dit proefschrift gebruiken we een spectroscopie
technick gebaseerd op enkel-electron-tunneling, om de electronische toestanden
van een verticale dot met weinig electrononen te bestuderen. Als er geen mag-
neetveld aanwezig is dan vertoond de additie-energy die betaald moet worden
om een extra electron toe te voegen een schillenstructuur die overeenkomt met
een twee dimensionale harmonische potentiaal. Brengen we langzaamaan een
magneetveld aan, dan bewegen de Coulomb pieken zich in paren als functie van
dit magneetveld. Dit komt doordat elke electronische toestand met twee elec-
tronen (met tegengestelde spin) wordt gevuld. Op sommige punten echter is
het voordeliger om electronen met gelijk georienteerde spin te vullen, volgens de
regel van Hund. Deze resultaten zijn in goede overeenstemming met een model
gebaseerd op constante interactie tussen de electronen. Voor het systeem met
twee electronen is ook de de singlet-triplet overgang bestudeerd. In dat geval is
het constante interactie model niet voldoende om de overgang te verklaren.

In hoofdstuk 3 worden de grondtoestanden en geéxciteerde toestanden in
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quantum dots, gevuld met 1 tot 12 electronen, bestudeerd. Er kunnen quan-
tumgetallen toegekend worden aan de verschillende toestanden en deze kunnen
goed vergeleken worden met exacte berekeningen. Het aanbrengen van een mag-
neetveld zorgt voor overgangen tussen de grondtoestand van een electron en zijn
geéxciteerde toestand. Deze overgangen worden verklaard in het kader van het
kruisen van enkele deeltjes-toestanden, singlet-triplet overgangen, spin polarisatie
en de gegeneraliseerde regel van Hund. Deze quantum dots, die nauwelijks tot
geen verontreiningen hebben, bieden de mogelijkheid om ’atoomfysica’ te beoe-
fenen in een magneetveldgebied dat niet in echte atomen toegankelijk is.

In hoofdstuk 4 wordt het transport van electronen gemeten in verticale quan-
tum dots bij hoog magnetisch veld. De dot bevat tot 40 electronen. Over
een bepaald gebied in magneetveld zijn alle electronen spin-gepolariseerd en
vullen opeenvolgende baanimpulsmoment-toestanden op. Dit wordt de maxi-
male dichtheid druppel (MDD) genoemd. Het magneetveldgebied waarin deze
MDD toestand de grondtoestand is, neemt af als het aantal electronen in de dot
toeneemt. Als de MDD toestand instabiel wordt, dan gaat dit gepaard met een
herverdeling van de lading in de dot, die tot gevolg heeft dat de electronen in de
dot over een groter gebied verspreid zijn.

In hoofdstuk 5 wordt de magneetveld afhankelijkheid van toestanden in lat-
erale quantum dots bestudeerd. Om de afhankelijkheid van energietoestanden
te quantificeren wordt gekeken naar de afgeleide van de energie naar het mag-
neetveld. Om scherpere resonanties te krijgen, die een betere energieresolutie tot
gevolg hebben, is gekeken naar twee laterale dots in serie.

In hoofdstuk 6 zijn tunnelprocessen die geinduceerd worden door fotonen
bestudeerd, om te kijken naar de interactie tussen (microgolf-) licht en discrete nul
dimensionale toestanden in een enkele laterale dot. Als de energie van de fotonen
kleiner is dan de energieopsplitsing tussen 0D toestanden, dan zijn er ’sideband’
resonanties van de grondtoestand zichtbaar. Als de energie van de fotonen de 0D
opsplitsing overschreidt, dan zijn resonanties te zien die overeenkomen met de
aangeslagen toestanden van de dot. Verschillende resonanties zijn te verklaren
door hun afhankelijkheid te volgen, van het magneetveld en van de frequentie en
intensiteit van het microgolfveld.

In hoofdstuk 7 zijn twee laterale dots op een dusdanige manier met elkaar ver-
bonden dat een ’kunstmatig molecuul’ gevormd wordt. Afhankelijk van de kop-
peling tussen de dots hebben de dots een ionische binding (waarbij de electronen
zijn gelokaliseerd op een van de individuele dots) of een covalente binding (waar-
bij de electronen zijn gedelokaliseerd over beide dots). De covalente binding heeft
tot gevolg dat de energie opsplitst in een symmetrische en een anti-symmetrische.
De opsplitsing is afhankelijk van de koppeling tussen de dots. De dc-stroom ten
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gevolge van microgolfstraling laat een overgang zien van cen ionische naar een
covalente binding als de koppeling tussen de dots wordt gevarieerd.

In hoofdstuk 8 wordt een dubbele dot gebruikt als een instelbaar twee niveau
systeem voor electronische energie toestanden. Een dc-stroom meet direkt de
overgangswaarschijnlijkheid van de elastische en inelastische overgangen tussen de
twee niveau’s. Voor inelastische overgangen wordt er energie uitgewisseld met de
Bosonische vrijheidsgraden in de omgeving. De inelastische overgangswaarschijn-
lijkheden worden goed beschreven door de Einstein coefficienten die de absorptie
relateren aan gestimuleerde en spontane emissie. De meest efficient gekoppelde
Bosonen in de omgeving van het halfgeleider systeem dat wij hebben doorgeme-
ten zijn acoustische phononen. De experimenten laten zien dat vacuumfluctuaties
in de omgeving van zeer kleine coherente quantum systeem belangrijk zijn.

In hoofdstuk 9 is een controleerbaar Kondo effect gerealizeerd in een kleine
quantum dot. De dot kan veranderd worden van een Kondo systeem in een niet-
Kondo systeem als het aantal elektronen op de dot veranderd wordt van een
oneven in een even aantal elektronen. De Kondo temperatuur kan gevarieerd
worden door de spanning op de gate te veranderen en daarmee de enkele deelt-
jes toestanden te verschuiven ten opzichte van de Fermi energie. Metingen als
functie van magneetveld en temperatuur van een dot in het Coulomb blokkade
gebied vertonen goede overeenkomsten met voorspellingen van Kondo effecten in
evenwicht en in niet-evenwicht situaties.
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